Properties

Label 91.2.bb
Level $91$
Weight $2$
Character orbit 91.bb
Rep. character $\chi_{91}(5,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $32$
Newform subspaces $1$
Sturm bound $18$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.bb (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 91 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(18\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(91, [\chi])\).

Total New Old
Modular forms 48 48 0
Cusp forms 32 32 0
Eisenstein series 16 16 0

Trace form

\( 32 q - 2 q^{2} - 12 q^{3} - 6 q^{5} - 6 q^{7} - 16 q^{8} + 8 q^{9} - 10 q^{11} + 28 q^{14} - 44 q^{15} + 12 q^{16} - 4 q^{18} + 12 q^{19} - 26 q^{21} - 8 q^{22} - 12 q^{24} + 24 q^{26} - 6 q^{28} + 16 q^{29}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(91, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
91.2.bb.a 91.bb 91.ab $32$ $0.727$ None 91.2.bb.a \(-2\) \(-12\) \(-6\) \(-6\) $\mathrm{SU}(2)[C_{12}]$