Defining parameters
Level: | \( N \) | \(=\) | \( 912 = 2^{4} \cdot 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 912.cn (of order \(36\) and degree \(12\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 304 \) |
Character field: | \(\Q(\zeta_{36})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(320\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(912, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1968 | 960 | 1008 |
Cusp forms | 1872 | 960 | 912 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(912, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
912.2.cn.a | $960$ | $7.282$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(912, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(912, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(304, [\chi])\)\(^{\oplus 2}\)