Properties

Label 912.2.cn
Level $912$
Weight $2$
Character orbit 912.cn
Rep. character $\chi_{912}(67,\cdot)$
Character field $\Q(\zeta_{36})$
Dimension $960$
Newform subspaces $1$
Sturm bound $320$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.cn (of order \(36\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 304 \)
Character field: \(\Q(\zeta_{36})\)
Newform subspaces: \( 1 \)
Sturm bound: \(320\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(912, [\chi])\).

Total New Old
Modular forms 1968 960 1008
Cusp forms 1872 960 912
Eisenstein series 96 0 96

Trace form

\( 960 q + 48 q^{10} + 12 q^{16} - 60 q^{32} - 120 q^{34} + 12 q^{36} + 108 q^{38} + 60 q^{40} + 180 q^{46} - 480 q^{49} - 108 q^{50} - 24 q^{51} + 48 q^{52} + 12 q^{54} + 72 q^{68} - 144 q^{69} - 72 q^{70}+ \cdots + 84 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(912, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
912.2.cn.a 912.cn 304.ag $960$ $7.282$ None 912.2.cn.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{36}]$

Decomposition of \(S_{2}^{\mathrm{old}}(912, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(912, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(304, [\chi])\)\(^{\oplus 2}\)