Properties

Label 912.2.cp
Level $912$
Weight $2$
Character orbit 912.cp
Rep. character $\chi_{912}(35,\cdot)$
Character field $\Q(\zeta_{36})$
Dimension $1872$
Newform subspaces $1$
Sturm bound $320$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.cp (of order \(36\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 912 \)
Character field: \(\Q(\zeta_{36})\)
Newform subspaces: \( 1 \)
Sturm bound: \(320\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(912, [\chi])\).

Total New Old
Modular forms 1968 1968 0
Cusp forms 1872 1872 0
Eisenstein series 96 96 0

Trace form

\( 1872 q - 12 q^{3} - 24 q^{4} - 12 q^{6} - 24 q^{7} - 36 q^{10} - 6 q^{12} - 24 q^{13} - 36 q^{16} - 24 q^{18} - 24 q^{19} + 6 q^{21} - 24 q^{22} - 12 q^{24} - 6 q^{27} + 24 q^{28} + 36 q^{30} - 24 q^{33}+ \cdots + 42 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(912, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
912.2.cp.a 912.cp 912.bp $1872$ $7.282$ None 912.2.cp.a \(0\) \(-12\) \(0\) \(-24\) $\mathrm{SU}(2)[C_{36}]$