Properties

Label 912.6
Level 912
Weight 6
Dimension 48176
Nonzero newspaces 24
Sturm bound 276480
Trace bound 13

Downloads

Learn more

Defining parameters

Level: N N = 912=24319 912 = 2^{4} \cdot 3 \cdot 19
Weight: k k = 6 6
Nonzero newspaces: 24 24
Sturm bound: 276480276480
Trace bound: 1313

Dimensions

The following table gives the dimensions of various subspaces of M6(Γ1(912))M_{6}(\Gamma_1(912)).

Total New Old
Modular forms 116208 48484 67724
Cusp forms 114192 48176 66016
Eisenstein series 2016 308 1708

Trace form

48176q41q3152q476q5+196q6+282q7+984q8951q91800q103624q1120q12+394q13648q14+4473q158424q16404q17+8764q18++282149q99+O(q100) 48176 q - 41 q^{3} - 152 q^{4} - 76 q^{5} + 196 q^{6} + 282 q^{7} + 984 q^{8} - 951 q^{9} - 1800 q^{10} - 3624 q^{11} - 20 q^{12} + 394 q^{13} - 648 q^{14} + 4473 q^{15} - 8424 q^{16} - 404 q^{17} + 8764 q^{18}+ \cdots + 282149 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(Γ1(912))S_{6}^{\mathrm{new}}(\Gamma_1(912))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
912.6.a χ912(1,)\chi_{912}(1, \cdot) 912.6.a.a 1 1
912.6.a.b 1
912.6.a.c 1
912.6.a.d 1
912.6.a.e 1
912.6.a.f 1
912.6.a.g 2
912.6.a.h 2
912.6.a.i 2
912.6.a.j 2
912.6.a.k 3
912.6.a.l 3
912.6.a.m 3
912.6.a.n 3
912.6.a.o 3
912.6.a.p 4
912.6.a.q 4
912.6.a.r 4
912.6.a.s 4
912.6.a.t 5
912.6.a.u 5
912.6.a.v 5
912.6.a.w 5
912.6.a.x 5
912.6.a.y 6
912.6.a.z 7
912.6.a.ba 7
912.6.d χ912(191,)\chi_{912}(191, \cdot) n/a 180 1
912.6.e χ912(151,)\chi_{912}(151, \cdot) None 0 1
912.6.f χ912(113,)\chi_{912}(113, \cdot) n/a 198 1
912.6.g χ912(457,)\chi_{912}(457, \cdot) None 0 1
912.6.j χ912(647,)\chi_{912}(647, \cdot) None 0 1
912.6.k χ912(607,)\chi_{912}(607, \cdot) 912.6.k.a 16 1
912.6.k.b 16
912.6.k.c 34
912.6.k.d 34
912.6.p χ912(569,)\chi_{912}(569, \cdot) None 0 1
912.6.q χ912(49,)\chi_{912}(49, \cdot) n/a 200 2
912.6.r χ912(341,)\chi_{912}(341, \cdot) n/a 1592 2
912.6.u χ912(229,)\chi_{912}(229, \cdot) n/a 720 2
912.6.v χ912(419,)\chi_{912}(419, \cdot) n/a 1440 2
912.6.y χ912(379,)\chi_{912}(379, \cdot) n/a 800 2
912.6.bb χ912(31,)\chi_{912}(31, \cdot) n/a 200 2
912.6.bc χ912(311,)\chi_{912}(311, \cdot) None 0 2
912.6.bd χ912(521,)\chi_{912}(521, \cdot) None 0 2
912.6.bg χ912(103,)\chi_{912}(103, \cdot) None 0 2
912.6.bh χ912(239,)\chi_{912}(239, \cdot) n/a 400 2
912.6.bm χ912(121,)\chi_{912}(121, \cdot) None 0 2
912.6.bn χ912(65,)\chi_{912}(65, \cdot) n/a 396 2
912.6.bo χ912(289,)\chi_{912}(289, \cdot) n/a 600 6
912.6.bq χ912(277,)\chi_{912}(277, \cdot) n/a 1600 4
912.6.br χ912(221,)\chi_{912}(221, \cdot) n/a 3184 4
912.6.bu χ912(259,)\chi_{912}(259, \cdot) n/a 1600 4
912.6.bv χ912(11,)\chi_{912}(11, \cdot) n/a 3184 4
912.6.bz χ912(41,)\chi_{912}(41, \cdot) None 0 6
912.6.ca χ912(25,)\chi_{912}(25, \cdot) None 0 6
912.6.cc χ912(257,)\chi_{912}(257, \cdot) n/a 1188 6
912.6.cf χ912(295,)\chi_{912}(295, \cdot) None 0 6
912.6.ch χ912(47,)\chi_{912}(47, \cdot) n/a 1200 6
912.6.ci χ912(79,)\chi_{912}(79, \cdot) n/a 600 6
912.6.ck χ912(23,)\chi_{912}(23, \cdot) None 0 6
912.6.cn χ912(67,)\chi_{912}(67, \cdot) n/a 4800 12
912.6.cp χ912(35,)\chi_{912}(35, \cdot) n/a 9552 12
912.6.cq χ912(61,)\chi_{912}(61, \cdot) n/a 4800 12
912.6.cs χ912(29,)\chi_{912}(29, \cdot) n/a 9552 12

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S6old(Γ1(912))S_{6}^{\mathrm{old}}(\Gamma_1(912)) into lower level spaces

S6old(Γ1(912)) S_{6}^{\mathrm{old}}(\Gamma_1(912)) \cong S6new(Γ1(1))S_{6}^{\mathrm{new}}(\Gamma_1(1))20^{\oplus 20}\oplusS6new(Γ1(2))S_{6}^{\mathrm{new}}(\Gamma_1(2))16^{\oplus 16}\oplusS6new(Γ1(3))S_{6}^{\mathrm{new}}(\Gamma_1(3))10^{\oplus 10}\oplusS6new(Γ1(4))S_{6}^{\mathrm{new}}(\Gamma_1(4))12^{\oplus 12}\oplusS6new(Γ1(6))S_{6}^{\mathrm{new}}(\Gamma_1(6))8^{\oplus 8}\oplusS6new(Γ1(8))S_{6}^{\mathrm{new}}(\Gamma_1(8))8^{\oplus 8}\oplusS6new(Γ1(12))S_{6}^{\mathrm{new}}(\Gamma_1(12))6^{\oplus 6}\oplusS6new(Γ1(16))S_{6}^{\mathrm{new}}(\Gamma_1(16))4^{\oplus 4}\oplusS6new(Γ1(19))S_{6}^{\mathrm{new}}(\Gamma_1(19))10^{\oplus 10}\oplusS6new(Γ1(24))S_{6}^{\mathrm{new}}(\Gamma_1(24))4^{\oplus 4}\oplusS6new(Γ1(38))S_{6}^{\mathrm{new}}(\Gamma_1(38))8^{\oplus 8}\oplusS6new(Γ1(48))S_{6}^{\mathrm{new}}(\Gamma_1(48))2^{\oplus 2}\oplusS6new(Γ1(57))S_{6}^{\mathrm{new}}(\Gamma_1(57))5^{\oplus 5}\oplusS6new(Γ1(76))S_{6}^{\mathrm{new}}(\Gamma_1(76))6^{\oplus 6}\oplusS6new(Γ1(114))S_{6}^{\mathrm{new}}(\Gamma_1(114))4^{\oplus 4}\oplusS6new(Γ1(152))S_{6}^{\mathrm{new}}(\Gamma_1(152))4^{\oplus 4}\oplusS6new(Γ1(228))S_{6}^{\mathrm{new}}(\Gamma_1(228))3^{\oplus 3}\oplusS6new(Γ1(304))S_{6}^{\mathrm{new}}(\Gamma_1(304))2^{\oplus 2}\oplusS6new(Γ1(456))S_{6}^{\mathrm{new}}(\Gamma_1(456))2^{\oplus 2}