Properties

Label 92.2.h
Level $92$
Weight $2$
Character orbit 92.h
Rep. character $\chi_{92}(7,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $100$
Newform subspaces $1$
Sturm bound $24$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 92 = 2^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 92.h (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 92 \)
Character field: \(\Q(\zeta_{22})\)
Newform subspaces: \( 1 \)
Sturm bound: \(24\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(92, [\chi])\).

Total New Old
Modular forms 140 140 0
Cusp forms 100 100 0
Eisenstein series 40 40 0

Trace form

\( 100 q - 7 q^{2} - 11 q^{4} - 22 q^{5} - 12 q^{6} - 10 q^{8} - 12 q^{9} - 11 q^{10} - 18 q^{12} - 18 q^{13} - 11 q^{14} + 5 q^{16} - 22 q^{17} - 24 q^{18} - 11 q^{20} - 22 q^{21} - 30 q^{24} - 16 q^{25}+ \cdots - 71 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(92, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
92.2.h.a 92.h 92.h $100$ $0.735$ None 92.2.h.a \(-7\) \(0\) \(-22\) \(0\) $\mathrm{SU}(2)[C_{22}]$