Properties

Label 92.9.c
Level $92$
Weight $9$
Character orbit 92.c
Rep. character $\chi_{92}(47,\cdot)$
Character field $\Q$
Dimension $88$
Newform subspaces $1$
Sturm bound $108$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 92 = 2^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 92.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 4 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(108\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(92, [\chi])\).

Total New Old
Modular forms 98 88 10
Cusp forms 94 88 6
Eisenstein series 4 0 4

Trace form

\( 88 q - 336 q^{5} + 1617 q^{6} - 13707 q^{8} - 196264 q^{9} + 40114 q^{10} - 82415 q^{12} + 22832 q^{13} + 55992 q^{14} + 139024 q^{16} - 165648 q^{17} - 137887 q^{18} + 826404 q^{20} + 243648 q^{21} + 190556 q^{22}+ \cdots - 53187756 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(92, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
92.9.c.a 92.c 4.b $88$ $37.479$ None 92.9.c.a \(0\) \(0\) \(-336\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{9}^{\mathrm{old}}(92, [\chi])\) into lower level spaces

\( S_{9}^{\mathrm{old}}(92, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(4, [\chi])\)\(^{\oplus 2}\)