Defining parameters
Level: | \( N \) | \(=\) | \( 92 = 2^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 92.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 4 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(108\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(92, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 98 | 88 | 10 |
Cusp forms | 94 | 88 | 6 |
Eisenstein series | 4 | 0 | 4 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(92, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
92.9.c.a | $88$ | $37.479$ | None | \(0\) | \(0\) | \(-336\) | \(0\) |
Decomposition of \(S_{9}^{\mathrm{old}}(92, [\chi])\) into lower level spaces
\( S_{9}^{\mathrm{old}}(92, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(4, [\chi])\)\(^{\oplus 2}\)