Defining parameters
Level: | \( N \) | \(=\) | \( 920 = 2^{3} \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 920.e (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(288\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(920, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 152 | 32 | 120 |
Cusp forms | 136 | 32 | 104 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(920, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
920.2.e.a | $2$ | $7.346$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(4\) | \(0\) | \(q+2 i q^{3}+(-i+2)q^{5}-3 i q^{7}+\cdots\) |
920.2.e.b | $14$ | $7.346$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q-\beta _{8}q^{3}+\beta _{3}q^{5}+(\beta _{7}-\beta _{13})q^{7}+(1+\cdots)q^{9}+\cdots\) |
920.2.e.c | $16$ | $7.346$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q-\beta _{5}q^{3}-\beta _{7}q^{5}+(-\beta _{2}+\beta _{13})q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(920, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(920, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(230, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(460, [\chi])\)\(^{\oplus 2}\)