Defining parameters
Level: | \( N \) | \(=\) | \( 9200 = 2^{4} \cdot 5^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 9200.df (of order \(22\) and degree \(10\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 184 \) |
Character field: | \(\Q(\zeta_{22})\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(2880\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(9200, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 14640 | 0 | 14640 |
Cusp forms | 14160 | 0 | 14160 |
Eisenstein series | 480 | 0 | 480 |
Decomposition of \(S_{2}^{\mathrm{old}}(9200, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(9200, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(184, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(920, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4600, [\chi])\)\(^{\oplus 2}\)