Defining parameters
Level: | \( N \) | \(=\) | \( 9200 = 2^{4} \cdot 5^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 9200.i (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 92 \) |
Character field: | \(\Q\) | ||
Sturm bound: | \(2880\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(9200, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1476 | 228 | 1248 |
Cusp forms | 1404 | 228 | 1176 |
Eisenstein series | 72 | 0 | 72 |
Decomposition of \(S_{2}^{\mathrm{new}}(9200, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(9200, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(9200, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(368, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(460, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1840, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2300, [\chi])\)\(^{\oplus 3}\)