Properties

Label 925.2.cb
Level $925$
Weight $2$
Character orbit 925.cb
Rep. character $\chi_{925}(4,\cdot)$
Character field $\Q(\zeta_{90})$
Dimension $2208$
Newform subspaces $1$
Sturm bound $190$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.cb (of order \(90\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 925 \)
Character field: \(\Q(\zeta_{90})\)
Newform subspaces: \( 1 \)
Sturm bound: \(190\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(925, [\chi])\).

Total New Old
Modular forms 2304 2304 0
Cusp forms 2208 2208 0
Eisenstein series 96 96 0

Trace form

\( 2208 q - 30 q^{2} - 30 q^{3} - 18 q^{4} - 18 q^{5} - 45 q^{8} - 24 q^{9} - 12 q^{10} + 15 q^{11} - 90 q^{12} - 30 q^{13} - 27 q^{14} - 9 q^{15} - 30 q^{16} - 30 q^{17} - 18 q^{19} + 84 q^{20} - 18 q^{21}+ \cdots - 162 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(925, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
925.2.cb.a 925.cb 925.bb $2208$ $7.386$ None 925.2.cb.a \(-30\) \(-30\) \(-18\) \(0\) $\mathrm{SU}(2)[C_{90}]$