Defining parameters
Level: | \( N \) | \(=\) | \( 930 = 2 \cdot 3 \cdot 5 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 930.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 31 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 14 \) | ||
Sturm bound: | \(384\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(7\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(930, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 400 | 40 | 360 |
Cusp forms | 368 | 40 | 328 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(930, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(930, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(930, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(62, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(93, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(155, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(186, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(310, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(465, [\chi])\)\(^{\oplus 2}\)