Properties

Label 936.2.db
Level $936$
Weight $2$
Character orbit 936.db
Rep. character $\chi_{936}(61,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $328$
Newform subspaces $1$
Sturm bound $336$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.db (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 936 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(336\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(936, [\chi])\).

Total New Old
Modular forms 344 344 0
Cusp forms 328 328 0
Eisenstein series 16 16 0

Trace form

\( 328 q + q^{2} + q^{4} + q^{6} - 4 q^{7} - 2 q^{8} - 2 q^{9} - 4 q^{10} + 5 q^{12} - 6 q^{14} + 4 q^{15} + q^{16} - 4 q^{17} - 12 q^{18} - 18 q^{20} - 7 q^{22} + 44 q^{23} - 6 q^{24} + 144 q^{25} - 16 q^{26}+ \cdots + 39 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(936, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
936.2.db.a 936.db 936.cb $328$ $7.474$ None 936.2.cj.a \(1\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{6}]$