Properties

Label 936.2.ds
Level $936$
Weight $2$
Character orbit 936.ds
Rep. character $\chi_{936}(353,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $168$
Newform subspaces $1$
Sturm bound $336$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.ds (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 117 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(336\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(936, [\chi])\).

Total New Old
Modular forms 704 168 536
Cusp forms 640 168 472
Eisenstein series 64 0 64

Trace form

\( 168 q - 8 q^{15} + 16 q^{21} - 12 q^{27} + 24 q^{31} + 4 q^{33} + 36 q^{35} + 40 q^{39} + 36 q^{43} + 12 q^{45} + 36 q^{57} - 36 q^{63} + 36 q^{65} + 36 q^{69} + 72 q^{71} - 72 q^{77} + 48 q^{81} + 60 q^{83}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(936, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
936.2.ds.a 936.ds 117.x $168$ $7.474$ None 936.2.ds.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(936, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(936, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(234, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(468, [\chi])\)\(^{\oplus 2}\)