Defining parameters
Level: | \( N \) | \(=\) | \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 936.ds (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 117 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(936, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 704 | 168 | 536 |
Cusp forms | 640 | 168 | 472 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(936, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
936.2.ds.a | $168$ | $7.474$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(936, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(936, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(234, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(468, [\chi])\)\(^{\oplus 2}\)