Properties

Label 936.2.ee
Level $936$
Weight $2$
Character orbit 936.ee
Rep. character $\chi_{936}(115,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $656$
Newform subspaces $1$
Sturm bound $336$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.ee (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 936 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(336\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(936, [\chi])\).

Total New Old
Modular forms 688 688 0
Cusp forms 656 656 0
Eisenstein series 32 32 0

Trace form

\( 656 q - 2 q^{2} - 4 q^{3} - 2 q^{8} - 4 q^{9} - 12 q^{10} - 4 q^{11} + 18 q^{12} - 4 q^{14} - 4 q^{16} - 24 q^{17} + 6 q^{18} - 16 q^{19} - 34 q^{20} - 4 q^{22} - 14 q^{24} - 12 q^{26} - 16 q^{27} - 16 q^{28}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(936, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
936.2.ee.a 936.ee 936.de $656$ $7.474$ None 936.2.ee.a \(-2\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$