Properties

Label 936.2.j
Level 936936
Weight 22
Character orbit 936.j
Rep. character χ936(755,)\chi_{936}(755,\cdot)
Character field Q\Q
Dimension 4848
Newform subspaces 11
Sturm bound 336336
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 936=233213 936 = 2^{3} \cdot 3^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 936.j (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 24 24
Character field: Q\Q
Newform subspaces: 1 1
Sturm bound: 336336
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M2(936,[χ])M_{2}(936, [\chi]).

Total New Old
Modular forms 176 48 128
Cusp forms 160 48 112
Eisenstein series 16 0 16

Trace form

48q8q4+16q10+8q16+32q19+48q2524q28+32q3432q4032q43+24q4648q49+8q5240q58+40q64+32q6740q70+40q76+32q97+O(q100) 48 q - 8 q^{4} + 16 q^{10} + 8 q^{16} + 32 q^{19} + 48 q^{25} - 24 q^{28} + 32 q^{34} - 32 q^{40} - 32 q^{43} + 24 q^{46} - 48 q^{49} + 8 q^{52} - 40 q^{58} + 40 q^{64} + 32 q^{67} - 40 q^{70} + 40 q^{76}+ \cdots - 32 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(936,[χ])S_{2}^{\mathrm{new}}(936, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
936.2.j.a 936.j 24.f 4848 7.4747.474 None 936.2.j.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Decomposition of S2old(936,[χ])S_{2}^{\mathrm{old}}(936, [\chi]) into lower level spaces

S2old(936,[χ]) S_{2}^{\mathrm{old}}(936, [\chi]) \simeq S2new(24,[χ])S_{2}^{\mathrm{new}}(24, [\chi])4^{\oplus 4}\oplusS2new(72,[χ])S_{2}^{\mathrm{new}}(72, [\chi])2^{\oplus 2}\oplusS2new(312,[χ])S_{2}^{\mathrm{new}}(312, [\chi])2^{\oplus 2}