Properties

Label 936.2.q
Level 936936
Weight 22
Character orbit 936.q
Rep. character χ936(313,)\chi_{936}(313,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 7272
Newform subspaces 77
Sturm bound 336336
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 936=233213 936 = 2^{3} \cdot 3^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 936.q (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 9 9
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 7 7
Sturm bound: 336336
Trace bound: 77
Distinguishing TpT_p: 55, 77

Dimensions

The following table gives the dimensions of various subspaces of M2(936,[χ])M_{2}(936, [\chi]).

Total New Old
Modular forms 352 72 280
Cusp forms 320 72 248
Eisenstein series 32 0 32

Trace form

72q2q34q5+2q9+14q11+12q15+12q1712q19+8q2136q2526q2712q296q3312q3518q41+6q4328q4512q4724q49+104q99+O(q100) 72 q - 2 q^{3} - 4 q^{5} + 2 q^{9} + 14 q^{11} + 12 q^{15} + 12 q^{17} - 12 q^{19} + 8 q^{21} - 36 q^{25} - 26 q^{27} - 12 q^{29} - 6 q^{33} - 12 q^{35} - 18 q^{41} + 6 q^{43} - 28 q^{45} - 12 q^{47} - 24 q^{49}+ \cdots - 104 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(936,[χ])S_{2}^{\mathrm{new}}(936, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
936.2.q.a 936.q 9.c 22 7.4747.474 Q(3)\Q(\sqrt{-3}) None 936.2.q.a 00 3-3 44 2-2 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1ζ6)q3+4ζ6q5+(2+2ζ6)q7+q+(-1-\zeta_{6})q^{3}+4\zeta_{6}q^{5}+(-2+2\zeta_{6})q^{7}+\cdots
936.2.q.b 936.q 9.c 22 7.4747.474 Q(3)\Q(\sqrt{-3}) None 936.2.q.b 00 33 2-2 22 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1+ζ6)q32ζ6q5+(22ζ6)q7+q+(1+\zeta_{6})q^{3}-2\zeta_{6}q^{5}+(2-2\zeta_{6})q^{7}+\cdots
936.2.q.c 936.q 9.c 22 7.4747.474 Q(3)\Q(\sqrt{-3}) None 936.2.q.c 00 33 2-2 44 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(2ζ6)q32ζ6q5+(44ζ6)q7+q+(2-\zeta_{6})q^{3}-2\zeta_{6}q^{5}+(4-4\zeta_{6})q^{7}+\cdots
936.2.q.d 936.q 9.c 1212 7.4747.474 Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots) None 936.2.q.d 00 4-4 1-1 22 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+β5q3+(β2β11)q5+(1+β1+)q7+q+\beta _{5}q^{3}+(\beta _{2}-\beta _{11})q^{5}+(-1+\beta _{1}+\cdots)q^{7}+\cdots
936.2.q.e 936.q 9.c 1616 7.4747.474 Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots) None 936.2.q.e 00 1-1 1-1 4-4 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qβ1q3+(β5β9+β11)q5β14q7+q-\beta _{1}q^{3}+(-\beta _{5}-\beta _{9}+\beta _{11})q^{5}-\beta _{14}q^{7}+\cdots
936.2.q.f 936.q 9.c 1616 7.4747.474 Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots) None 936.2.q.f 00 00 11 22 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+β1q3+(β6β11)q5β5q7+(β2+)q9+q+\beta _{1}q^{3}+(\beta _{6}-\beta _{11})q^{5}-\beta _{5}q^{7}+(-\beta _{2}+\cdots)q^{9}+\cdots
936.2.q.g 936.q 9.c 2222 7.4747.474 None 936.2.q.g 00 00 3-3 4-4 SU(2)[C3]\mathrm{SU}(2)[C_{3}]

Decomposition of S2old(936,[χ])S_{2}^{\mathrm{old}}(936, [\chi]) into lower level spaces

S2old(936,[χ]) S_{2}^{\mathrm{old}}(936, [\chi]) \simeq S2new(18,[χ])S_{2}^{\mathrm{new}}(18, [\chi])6^{\oplus 6}\oplusS2new(36,[χ])S_{2}^{\mathrm{new}}(36, [\chi])4^{\oplus 4}\oplusS2new(72,[χ])S_{2}^{\mathrm{new}}(72, [\chi])2^{\oplus 2}\oplusS2new(117,[χ])S_{2}^{\mathrm{new}}(117, [\chi])4^{\oplus 4}\oplusS2new(234,[χ])S_{2}^{\mathrm{new}}(234, [\chi])3^{\oplus 3}\oplusS2new(468,[χ])S_{2}^{\mathrm{new}}(468, [\chi])2^{\oplus 2}