Properties

Label 936.2.q
Level $936$
Weight $2$
Character orbit 936.q
Rep. character $\chi_{936}(313,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $72$
Newform subspaces $7$
Sturm bound $336$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.q (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 7 \)
Sturm bound: \(336\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(936, [\chi])\).

Total New Old
Modular forms 352 72 280
Cusp forms 320 72 248
Eisenstein series 32 0 32

Trace form

\( 72 q - 2 q^{3} - 4 q^{5} + 2 q^{9} + 14 q^{11} + 12 q^{15} + 12 q^{17} - 12 q^{19} + 8 q^{21} - 36 q^{25} - 26 q^{27} - 12 q^{29} - 6 q^{33} - 12 q^{35} - 18 q^{41} + 6 q^{43} - 28 q^{45} - 12 q^{47} - 24 q^{49}+ \cdots - 104 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(936, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
936.2.q.a 936.q 9.c $2$ $7.474$ \(\Q(\sqrt{-3}) \) None 936.2.q.a \(0\) \(-3\) \(4\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\zeta_{6})q^{3}+4\zeta_{6}q^{5}+(-2+2\zeta_{6})q^{7}+\cdots\)
936.2.q.b 936.q 9.c $2$ $7.474$ \(\Q(\sqrt{-3}) \) None 936.2.q.b \(0\) \(3\) \(-2\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\zeta_{6})q^{3}-2\zeta_{6}q^{5}+(2-2\zeta_{6})q^{7}+\cdots\)
936.2.q.c 936.q 9.c $2$ $7.474$ \(\Q(\sqrt{-3}) \) None 936.2.q.c \(0\) \(3\) \(-2\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(2-\zeta_{6})q^{3}-2\zeta_{6}q^{5}+(4-4\zeta_{6})q^{7}+\cdots\)
936.2.q.d 936.q 9.c $12$ $7.474$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 936.2.q.d \(0\) \(-4\) \(-1\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{5}q^{3}+(\beta _{2}-\beta _{11})q^{5}+(-1+\beta _{1}+\cdots)q^{7}+\cdots\)
936.2.q.e 936.q 9.c $16$ $7.474$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 936.2.q.e \(0\) \(-1\) \(-1\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{3}+(-\beta _{5}-\beta _{9}+\beta _{11})q^{5}-\beta _{14}q^{7}+\cdots\)
936.2.q.f 936.q 9.c $16$ $7.474$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 936.2.q.f \(0\) \(0\) \(1\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{3}+(\beta _{6}-\beta _{11})q^{5}-\beta _{5}q^{7}+(-\beta _{2}+\cdots)q^{9}+\cdots\)
936.2.q.g 936.q 9.c $22$ $7.474$ None 936.2.q.g \(0\) \(0\) \(-3\) \(-4\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{2}^{\mathrm{old}}(936, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(936, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(234, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(468, [\chi])\)\(^{\oplus 2}\)