Properties

Label 936.4
Level 936
Weight 4
Dimension 31735
Nonzero newspaces 45
Sturm bound 193536
Trace bound 31

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 45 \)
Sturm bound: \(193536\)
Trace bound: \(31\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(936))\).

Total New Old
Modular forms 73728 32131 41597
Cusp forms 71424 31735 39689
Eisenstein series 2304 396 1908

Trace form

\( 31735 q - 28 q^{2} - 42 q^{3} - 8 q^{4} + 44 q^{5} - 8 q^{6} + 48 q^{7} - 88 q^{8} - 138 q^{9} - 268 q^{10} - 250 q^{11} - 260 q^{12} - 64 q^{13} - 364 q^{14} - 96 q^{15} - 304 q^{16} + 71 q^{17} + 192 q^{18}+ \cdots + 14868 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(936))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
936.4.a \(\chi_{936}(1, \cdot)\) 936.4.a.a 1 1
936.4.a.b 1
936.4.a.c 2
936.4.a.d 2
936.4.a.e 2
936.4.a.f 2
936.4.a.g 2
936.4.a.h 2
936.4.a.i 2
936.4.a.j 2
936.4.a.k 3
936.4.a.l 3
936.4.a.m 3
936.4.a.n 4
936.4.a.o 4
936.4.a.p 5
936.4.a.q 5
936.4.c \(\chi_{936}(649, \cdot)\) 936.4.c.a 10 1
936.4.c.b 10
936.4.c.c 12
936.4.c.d 20
936.4.d \(\chi_{936}(287, \cdot)\) None 0 1
936.4.g \(\chi_{936}(469, \cdot)\) n/a 180 1
936.4.h \(\chi_{936}(467, \cdot)\) n/a 168 1
936.4.j \(\chi_{936}(755, \cdot)\) n/a 144 1
936.4.m \(\chi_{936}(181, \cdot)\) n/a 208 1
936.4.n \(\chi_{936}(935, \cdot)\) None 0 1
936.4.q \(\chi_{936}(313, \cdot)\) n/a 216 2
936.4.r \(\chi_{936}(601, \cdot)\) n/a 252 2
936.4.s \(\chi_{936}(529, \cdot)\) n/a 252 2
936.4.t \(\chi_{936}(217, \cdot)\) n/a 106 2
936.4.w \(\chi_{936}(307, \cdot)\) n/a 416 2
936.4.x \(\chi_{936}(343, \cdot)\) None 0 2
936.4.ba \(\chi_{936}(161, \cdot)\) 936.4.ba.a 40 2
936.4.ba.b 44
936.4.bb \(\chi_{936}(125, \cdot)\) n/a 336 2
936.4.bd \(\chi_{936}(179, \cdot)\) n/a 336 2
936.4.be \(\chi_{936}(685, \cdot)\) n/a 416 2
936.4.bh \(\chi_{936}(503, \cdot)\) None 0 2
936.4.bi \(\chi_{936}(361, \cdot)\) n/a 104 2
936.4.bk \(\chi_{936}(277, \cdot)\) n/a 1000 2
936.4.bn \(\chi_{936}(419, \cdot)\) n/a 1000 2
936.4.bp \(\chi_{936}(95, \cdot)\) None 0 2
936.4.br \(\chi_{936}(311, \cdot)\) None 0 2
936.4.bv \(\chi_{936}(347, \cdot)\) n/a 1000 2
936.4.bx \(\chi_{936}(493, \cdot)\) n/a 1000 2
936.4.by \(\chi_{936}(131, \cdot)\) n/a 864 2
936.4.ca \(\chi_{936}(205, \cdot)\) n/a 1000 2
936.4.ce \(\chi_{936}(23, \cdot)\) None 0 2
936.4.cg \(\chi_{936}(191, \cdot)\) None 0 2
936.4.ch \(\chi_{936}(49, \cdot)\) n/a 252 2
936.4.cj \(\chi_{936}(133, \cdot)\) n/a 1000 2
936.4.cl \(\chi_{936}(155, \cdot)\) n/a 1000 2
936.4.co \(\chi_{936}(157, \cdot)\) n/a 864 2
936.4.cq \(\chi_{936}(563, \cdot)\) n/a 1000 2
936.4.cr \(\chi_{936}(121, \cdot)\) n/a 252 2
936.4.ct \(\chi_{936}(599, \cdot)\) None 0 2
936.4.cw \(\chi_{936}(25, \cdot)\) n/a 252 2
936.4.cy \(\chi_{936}(263, \cdot)\) None 0 2
936.4.da \(\chi_{936}(491, \cdot)\) n/a 1000 2
936.4.db \(\chi_{936}(61, \cdot)\) n/a 1000 2
936.4.df \(\chi_{936}(647, \cdot)\) None 0 2
936.4.dg \(\chi_{936}(829, \cdot)\) n/a 416 2
936.4.dj \(\chi_{936}(35, \cdot)\) n/a 336 2
936.4.dk \(\chi_{936}(31, \cdot)\) None 0 4
936.4.dl \(\chi_{936}(187, \cdot)\) n/a 2000 4
936.4.dq \(\chi_{936}(197, \cdot)\) n/a 672 4
936.4.dr \(\chi_{936}(89, \cdot)\) n/a 168 4
936.4.ds \(\chi_{936}(353, \cdot)\) n/a 504 4
936.4.dt \(\chi_{936}(149, \cdot)\) n/a 2000 4
936.4.dy \(\chi_{936}(461, \cdot)\) n/a 2000 4
936.4.dz \(\chi_{936}(41, \cdot)\) n/a 504 4
936.4.ec \(\chi_{936}(271, \cdot)\) None 0 4
936.4.ed \(\chi_{936}(19, \cdot)\) n/a 832 4
936.4.ee \(\chi_{936}(115, \cdot)\) n/a 2000 4
936.4.ef \(\chi_{936}(175, \cdot)\) None 0 4
936.4.ek \(\chi_{936}(7, \cdot)\) None 0 4
936.4.el \(\chi_{936}(67, \cdot)\) n/a 2000 4
936.4.em \(\chi_{936}(5, \cdot)\) n/a 2000 4
936.4.en \(\chi_{936}(281, \cdot)\) n/a 504 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(936))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(936)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 18}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(78))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(104))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(117))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(156))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(234))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(312))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(468))\)\(^{\oplus 2}\)