Defining parameters
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.g (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 95 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(20\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(95, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 24 | 24 | 0 |
Cusp forms | 16 | 16 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(95, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
95.2.g.a | $4$ | $0.759$ | \(\Q(i, \sqrt{19})\) | \(\Q(\sqrt{-19}) \) | \(0\) | \(0\) | \(2\) | \(6\) | \(q-2\beta _{2}q^{4}-\beta _{3}q^{5}+(2-\beta _{1}-\beta _{2}+\beta _{3})q^{7}+\cdots\) |
95.2.g.b | $12$ | $0.759$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(0\) | \(-4\) | \(-12\) | \(q-\beta _{7}q^{2}+\beta _{5}q^{3}+(-\beta _{6}-\beta _{8})q^{4}+\cdots\) |