Defining parameters
Level: | \( N \) | \(=\) | \( 9522 = 2 \cdot 3^{2} \cdot 23^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 9522.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 62 \) | ||
Sturm bound: | \(3312\) | ||
Trace bound: | \(29\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(11\), \(29\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(9522))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1752 | 210 | 1542 |
Cusp forms | 1561 | 210 | 1351 |
Eisenstein series | 191 | 0 | 191 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(23\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(24\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(18\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(33\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(30\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(24\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(18\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(27\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(36\) |
Plus space | \(+\) | \(99\) | ||
Minus space | \(-\) | \(111\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(9522))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(9522))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(9522)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(69))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(138))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(207))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(414))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(529))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1058))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1587))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3174))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4761))\)\(^{\oplus 2}\)