Defining parameters
Level: | \( N \) | = | \( 96 = 2^{5} \cdot 3 \) |
Weight: | \( k \) | = | \( 6 \) |
Nonzero newspaces: | \( 6 \) | ||
Newform subspaces: | \( 14 \) | ||
Sturm bound: | \(3072\) | ||
Trace bound: | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(96))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1344 | 550 | 794 |
Cusp forms | 1216 | 530 | 686 |
Eisenstein series | 128 | 20 | 108 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(96))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
96.6.a | \(\chi_{96}(1, \cdot)\) | 96.6.a.a | 1 | 1 |
96.6.a.b | 1 | |||
96.6.a.c | 1 | |||
96.6.a.d | 1 | |||
96.6.a.e | 1 | |||
96.6.a.f | 1 | |||
96.6.a.g | 2 | |||
96.6.a.h | 2 | |||
96.6.c | \(\chi_{96}(95, \cdot)\) | 96.6.c.a | 20 | 1 |
96.6.d | \(\chi_{96}(49, \cdot)\) | 96.6.d.a | 10 | 1 |
96.6.f | \(\chi_{96}(47, \cdot)\) | 96.6.f.a | 2 | 1 |
96.6.f.b | 16 | |||
96.6.j | \(\chi_{96}(25, \cdot)\) | None | 0 | 2 |
96.6.k | \(\chi_{96}(23, \cdot)\) | None | 0 | 2 |
96.6.n | \(\chi_{96}(13, \cdot)\) | 96.6.n.a | 160 | 4 |
96.6.o | \(\chi_{96}(11, \cdot)\) | 96.6.o.a | 312 | 4 |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(96))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(96)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 1}\)