Properties

Label 96.6
Level 96
Weight 6
Dimension 530
Nonzero newspaces 6
Newform subspaces 14
Sturm bound 3072
Trace bound 5

Downloads

Learn more

Defining parameters

Level: N N = 96=253 96 = 2^{5} \cdot 3
Weight: k k = 6 6
Nonzero newspaces: 6 6
Newform subspaces: 14 14
Sturm bound: 30723072
Trace bound: 55

Dimensions

The following table gives the dimensions of various subspaces of M6(Γ1(96))M_{6}(\Gamma_1(96)).

Total New Old
Modular forms 1344 550 794
Cusp forms 1216 530 686
Eisenstein series 128 20 108

Trace form

530q2q38q476q54q6+188q750q9+392q10+1580q12228q134960q14908q158368q161616q17+644q18+2356q19+15200q20++391180q99+O(q100) 530 q - 2 q^{3} - 8 q^{4} - 76 q^{5} - 4 q^{6} + 188 q^{7} - 50 q^{9} + 392 q^{10} + 1580 q^{12} - 228 q^{13} - 4960 q^{14} - 908 q^{15} - 8368 q^{16} - 1616 q^{17} + 644 q^{18} + 2356 q^{19} + 15200 q^{20}+ \cdots + 391180 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(Γ1(96))S_{6}^{\mathrm{new}}(\Gamma_1(96))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
96.6.a χ96(1,)\chi_{96}(1, \cdot) 96.6.a.a 1 1
96.6.a.b 1
96.6.a.c 1
96.6.a.d 1
96.6.a.e 1
96.6.a.f 1
96.6.a.g 2
96.6.a.h 2
96.6.c χ96(95,)\chi_{96}(95, \cdot) 96.6.c.a 20 1
96.6.d χ96(49,)\chi_{96}(49, \cdot) 96.6.d.a 10 1
96.6.f χ96(47,)\chi_{96}(47, \cdot) 96.6.f.a 2 1
96.6.f.b 16
96.6.j χ96(25,)\chi_{96}(25, \cdot) None 0 2
96.6.k χ96(23,)\chi_{96}(23, \cdot) None 0 2
96.6.n χ96(13,)\chi_{96}(13, \cdot) 96.6.n.a 160 4
96.6.o χ96(11,)\chi_{96}(11, \cdot) 96.6.o.a 312 4

Decomposition of S6old(Γ1(96))S_{6}^{\mathrm{old}}(\Gamma_1(96)) into lower level spaces