Properties

Label 96.6
Level 96
Weight 6
Dimension 530
Nonzero newspaces 6
Newform subspaces 14
Sturm bound 3072
Trace bound 5

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 96 = 2^{5} \cdot 3 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 14 \)
Sturm bound: \(3072\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(96))\).

Total New Old
Modular forms 1344 550 794
Cusp forms 1216 530 686
Eisenstein series 128 20 108

Trace form

\( 530 q - 2 q^{3} - 8 q^{4} - 76 q^{5} - 4 q^{6} + 188 q^{7} - 50 q^{9} + 392 q^{10} + 1580 q^{12} - 228 q^{13} - 4960 q^{14} - 908 q^{15} - 8368 q^{16} - 1616 q^{17} + 644 q^{18} + 2356 q^{19} + 15200 q^{20}+ \cdots + 391180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(96))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
96.6.a \(\chi_{96}(1, \cdot)\) 96.6.a.a 1 1
96.6.a.b 1
96.6.a.c 1
96.6.a.d 1
96.6.a.e 1
96.6.a.f 1
96.6.a.g 2
96.6.a.h 2
96.6.c \(\chi_{96}(95, \cdot)\) 96.6.c.a 20 1
96.6.d \(\chi_{96}(49, \cdot)\) 96.6.d.a 10 1
96.6.f \(\chi_{96}(47, \cdot)\) 96.6.f.a 2 1
96.6.f.b 16
96.6.j \(\chi_{96}(25, \cdot)\) None 0 2
96.6.k \(\chi_{96}(23, \cdot)\) None 0 2
96.6.n \(\chi_{96}(13, \cdot)\) 96.6.n.a 160 4
96.6.o \(\chi_{96}(11, \cdot)\) 96.6.o.a 312 4

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(96))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(96)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 1}\)