Defining parameters
Level: | \( N \) | = | \( 9610 = 2 \cdot 5 \cdot 31^{2} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 24 \) | ||
Sturm bound: | \(11070720\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(9610))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2778720 | 843919 | 1934801 |
Cusp forms | 2756641 | 843919 | 1912722 |
Eisenstein series | 22079 | 0 | 22079 |
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(9610))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(9610))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(9610)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(31))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(62))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(155))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(310))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(961))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1922))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4805))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9610))\)\(^{\oplus 1}\)