Properties

Label 9610.2
Level 9610
Weight 2
Dimension 843919
Nonzero newspaces 24
Sturm bound 11070720

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 9610 = 2 \cdot 5 \cdot 31^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(11070720\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(9610))\).

Total New Old
Modular forms 2778720 843919 1934801
Cusp forms 2756641 843919 1912722
Eisenstein series 22079 0 22079

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(9610))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
9610.2.a \(\chi_{9610}(1, \cdot)\) 9610.2.a.a 1 1
9610.2.a.b 1
9610.2.a.c 2
9610.2.a.d 2
9610.2.a.e 2
9610.2.a.f 2
9610.2.a.g 2
9610.2.a.h 2
9610.2.a.i 2
9610.2.a.j 2
9610.2.a.k 2
9610.2.a.l 2
9610.2.a.m 2
9610.2.a.n 2
9610.2.a.o 2
9610.2.a.p 2
9610.2.a.q 3
9610.2.a.r 3
9610.2.a.s 3
9610.2.a.t 3
9610.2.a.u 3
9610.2.a.v 3
9610.2.a.w 3
9610.2.a.x 3
9610.2.a.y 3
9610.2.a.z 4
9610.2.a.ba 4
9610.2.a.bb 4
9610.2.a.bc 4
9610.2.a.bd 4
9610.2.a.be 4
9610.2.a.bf 4
9610.2.a.bg 4
9610.2.a.bh 4
9610.2.a.bi 4
9610.2.a.bj 4
9610.2.a.bk 4
9610.2.a.bl 4
9610.2.a.bm 4
9610.2.a.bn 4
9610.2.a.bo 4
9610.2.a.bp 4
9610.2.a.bq 4
9610.2.a.br 4
9610.2.a.bs 4
9610.2.a.bt 4
9610.2.a.bu 4
9610.2.a.bv 4
9610.2.a.bw 4
9610.2.a.bx 4
9610.2.a.by 4
9610.2.a.bz 6
9610.2.a.ca 8
9610.2.a.cb 8
9610.2.a.cc 8
9610.2.a.cd 8
9610.2.a.ce 12
9610.2.a.cf 12
9610.2.a.cg 12
9610.2.a.ch 12
9610.2.a.ci 16
9610.2.a.cj 24
9610.2.a.ck 24
9610.2.b \(\chi_{9610}(7689, \cdot)\) n/a 464 1
9610.2.e \(\chi_{9610}(521, \cdot)\) n/a 616 2
9610.2.f \(\chi_{9610}(3843, \cdot)\) n/a 928 2
9610.2.h \(\chi_{9610}(531, \cdot)\) n/a 1248 4
9610.2.k \(\chi_{9610}(439, \cdot)\) n/a 928 2
9610.2.n \(\chi_{9610}(1349, \cdot)\) n/a 1856 4
9610.2.p \(\chi_{9610}(1483, \cdot)\) n/a 1856 4
9610.2.q \(\chi_{9610}(3221, \cdot)\) n/a 2464 8
9610.2.s \(\chi_{9610}(333, \cdot)\) n/a 3712 8
9610.2.t \(\chi_{9610}(1299, \cdot)\) n/a 3712 8
9610.2.w \(\chi_{9610}(311, \cdot)\) n/a 9840 30
9610.2.x \(\chi_{9610}(117, \cdot)\) n/a 7424 16
9610.2.bb \(\chi_{9610}(249, \cdot)\) n/a 14880 30
9610.2.bc \(\chi_{9610}(191, \cdot)\) n/a 19920 60
9610.2.be \(\chi_{9610}(123, \cdot)\) n/a 29760 60
9610.2.bf \(\chi_{9610}(101, \cdot)\) n/a 39360 120
9610.2.bg \(\chi_{9610}(129, \cdot)\) n/a 29760 60
9610.2.bj \(\chi_{9610}(39, \cdot)\) n/a 59520 120
9610.2.bm \(\chi_{9610}(37, \cdot)\) n/a 59520 120
9610.2.bo \(\chi_{9610}(41, \cdot)\) n/a 79680 240
9610.2.bp \(\chi_{9610}(23, \cdot)\) n/a 119040 240
9610.2.bt \(\chi_{9610}(9, \cdot)\) n/a 119040 240
9610.2.bv \(\chi_{9610}(3, \cdot)\) n/a 238080 480

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(9610))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(9610)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(31))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(62))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(155))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(310))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(961))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1922))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4805))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9610))\)\(^{\oplus 1}\)