Properties

Label 968.2.i
Level 968968
Weight 22
Character orbit 968.i
Rep. character χ968(9,)\chi_{968}(9,\cdot)
Character field Q(ζ5)\Q(\zeta_{5})
Dimension 108108
Newform subspaces 2020
Sturm bound 264264
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 968=23112 968 = 2^{3} \cdot 11^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 968.i (of order 55 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 11 11
Character field: Q(ζ5)\Q(\zeta_{5})
Newform subspaces: 20 20
Sturm bound: 264264
Trace bound: 77
Distinguishing TpT_p: 33, 77

Dimensions

The following table gives the dimensions of various subspaces of M2(968,[χ])M_{2}(968, [\chi]).

Total New Old
Modular forms 624 108 516
Cusp forms 432 108 324
Eisenstein series 192 0 192

Trace form

108q2q34q721q92q13+18q15+8q17+11q19+8q21+28q233q25+19q276q3110q3516q3744q3920q4130q4376q45++7q97+O(q100) 108 q - 2 q^{3} - 4 q^{7} - 21 q^{9} - 2 q^{13} + 18 q^{15} + 8 q^{17} + 11 q^{19} + 8 q^{21} + 28 q^{23} - 3 q^{25} + 19 q^{27} - 6 q^{31} - 10 q^{35} - 16 q^{37} - 44 q^{39} - 20 q^{41} - 30 q^{43} - 76 q^{45}+ \cdots + 7 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(968,[χ])S_{2}^{\mathrm{new}}(968, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
968.2.i.a 968.i 11.c 44 7.7307.730 Q(ζ10)\Q(\zeta_{10}) None 968.2.a.f 00 4-4 5-5 4-4 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(2ζ102ζ103)q3+(2+ζ10+)q5+q+(-2\zeta_{10}-2\zeta_{10}^{3})q^{3}+(-2+\zeta_{10}+\cdots)q^{5}+\cdots
968.2.i.b 968.i 11.c 44 7.7307.730 Q(ζ10)\Q(\zeta_{10}) None 968.2.a.f 00 4-4 5-5 44 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(2ζ102ζ103)q3+(2+ζ10+)q5+q+(-2\zeta_{10}-2\zeta_{10}^{3})q^{3}+(-2+\zeta_{10}+\cdots)q^{5}+\cdots
968.2.i.c 968.i 11.c 44 7.7307.730 Q(ζ10)\Q(\zeta_{10}) None 88.2.i.a 00 2-2 2-2 2-2 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(ζ10ζ103)q3+(1+ζ10+)q5+q+(-\zeta_{10}-\zeta_{10}^{3})q^{3}+(-1+\zeta_{10}+\cdots)q^{5}+\cdots
968.2.i.d 968.i 11.c 44 7.7307.730 Q(ζ10)\Q(\zeta_{10}) None 88.2.i.a 00 2-2 2-2 22 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(ζ10ζ103)q3+(1+ζ10+)q5+q+(-\zeta_{10}-\zeta_{10}^{3})q^{3}+(-1+\zeta_{10}+\cdots)q^{5}+\cdots
968.2.i.e 968.i 11.c 44 7.7307.730 Q(ζ10)\Q(\zeta_{10}) None 968.2.a.d 00 1-1 1-1 4-4 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+ζ102q3ζ10q54ζ103q7+q+\zeta_{10}^{2}q^{3}-\zeta_{10}q^{5}-4\zeta_{10}^{3}q^{7}+\cdots
968.2.i.f 968.i 11.c 44 7.7307.730 Q(ζ10)\Q(\zeta_{10}) None 968.2.a.d 00 1-1 1-1 44 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+ζ102q3ζ10q5+4ζ103q7+q+\zeta_{10}^{2}q^{3}-\zeta_{10}q^{5}+4\zeta_{10}^{3}q^{7}+\cdots
968.2.i.g 968.i 11.c 44 7.7307.730 Q(ζ10)\Q(\zeta_{10}) None 968.2.a.b 00 00 3-3 4-4 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q3ζ10q54ζ103q7+(33ζ10+)q9+q-3\zeta_{10}q^{5}-4\zeta_{10}^{3}q^{7}+(3-3\zeta_{10}+\cdots)q^{9}+\cdots
968.2.i.h 968.i 11.c 44 7.7307.730 Q(ζ10)\Q(\zeta_{10}) None 968.2.a.b 00 00 3-3 44 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q3ζ10q5+4ζ103q7+(33ζ10+)q9+q-3\zeta_{10}q^{5}+4\zeta_{10}^{3}q^{7}+(3-3\zeta_{10}+\cdots)q^{9}+\cdots
968.2.i.i 968.i 11.c 44 7.7307.730 Q(ζ10)\Q(\zeta_{10}) None 88.2.a.a 00 33 33 2-2 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q3ζ102q3+3ζ10q52ζ103q7+q-3\zeta_{10}^{2}q^{3}+3\zeta_{10}q^{5}-2\zeta_{10}^{3}q^{7}+\cdots
968.2.i.j 968.i 11.c 44 7.7307.730 Q(ζ10)\Q(\zeta_{10}) None 88.2.a.a 00 33 33 22 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q3ζ102q3+3ζ10q5+2ζ103q7+q-3\zeta_{10}^{2}q^{3}+3\zeta_{10}q^{5}+2\zeta_{10}^{3}q^{7}+\cdots
968.2.i.k 968.i 11.c 44 7.7307.730 Q(ζ10)\Q(\zeta_{10}) None 88.2.i.a 00 33 33 33 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(ζ10ζ102+ζ103)q3+(1+ζ102+)q5+q+(\zeta_{10}-\zeta_{10}^{2}+\zeta_{10}^{3})q^{3}+(1+\zeta_{10}^{2}+\cdots)q^{5}+\cdots
968.2.i.l 968.i 11.c 44 7.7307.730 Q(ζ10)\Q(\zeta_{10}) None 968.2.a.f 00 66 55 6-6 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(2ζ102ζ102+2ζ103)q3+(2+)q5+q+(2\zeta_{10}-2\zeta_{10}^{2}+2\zeta_{10}^{3})q^{3}+(2+\cdots)q^{5}+\cdots
968.2.i.m 968.i 11.c 44 7.7307.730 Q(ζ10)\Q(\zeta_{10}) None 968.2.a.f 00 66 55 66 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(2ζ102ζ102+2ζ103)q3+(2+)q5+q+(2\zeta_{10}-2\zeta_{10}^{2}+2\zeta_{10}^{3})q^{3}+(2+\cdots)q^{5}+\cdots
968.2.i.n 968.i 11.c 88 7.7307.730 8.0.324000000.3 None 968.2.a.k 00 2-2 44 2-2 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(β2+β7)q3+(β12β6)q5+(1+)q7+q+(\beta _{2}+\beta _{7})q^{3}+(-\beta _{1}-2\beta _{6})q^{5}+(-1+\cdots)q^{7}+\cdots
968.2.i.o 968.i 11.c 88 7.7307.730 8.0.324000000.3 None 968.2.a.k 00 2-2 44 22 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(β2+β7)q3+(β12β6)q5+(1+)q7+q+(\beta _{2}+\beta _{7})q^{3}+(-\beta _{1}-2\beta _{6})q^{5}+(1+\cdots)q^{7}+\cdots
968.2.i.p 968.i 11.c 88 7.7307.730 8.0.682515625.5 None 88.2.i.b 00 1-1 3-3 7-7 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(β1+β4β6)q3+(β3β4β5+)q5+q+(\beta _{1}+\beta _{4}-\beta _{6})q^{3}+(\beta _{3}-\beta _{4}-\beta _{5}+\cdots)q^{5}+\cdots
968.2.i.q 968.i 11.c 88 7.7307.730 8.0.1305015625.1 None 88.2.a.b 00 1-1 3-3 2-2 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+β5q3+(2β1+2β22β3+)q5+q+\beta _{5}q^{3}+(-2-\beta _{1}+2\beta _{2}-2\beta _{3}+\cdots)q^{5}+\cdots
968.2.i.r 968.i 11.c 88 7.7307.730 8.0.1305015625.1 None 88.2.a.b 00 1-1 3-3 22 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+β5q3+(2β1+2β22β3+)q5+q+\beta _{5}q^{3}+(-2-\beta _{1}+2\beta _{2}-2\beta _{3}+\cdots)q^{5}+\cdots
968.2.i.s 968.i 11.c 88 7.7307.730 8.0.682515625.5 None 88.2.i.b 00 1-1 22 8-8 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(β2+β5)q3+(1β2+β4β6+)q5+q+(-\beta _{2}+\beta _{5})q^{3}+(1-\beta _{2}+\beta _{4}-\beta _{6}+\cdots)q^{5}+\cdots
968.2.i.t 968.i 11.c 88 7.7307.730 8.0.682515625.5 None 88.2.i.b 00 1-1 22 88 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(β2+β5)q3+(1β2+β4β6+)q5+q+(-\beta _{2}+\beta _{5})q^{3}+(1-\beta _{2}+\beta _{4}-\beta _{6}+\cdots)q^{5}+\cdots

Decomposition of S2old(968,[χ])S_{2}^{\mathrm{old}}(968, [\chi]) into lower level spaces

S2old(968,[χ]) S_{2}^{\mathrm{old}}(968, [\chi]) \simeq S2new(22,[χ])S_{2}^{\mathrm{new}}(22, [\chi])6^{\oplus 6}\oplusS2new(44,[χ])S_{2}^{\mathrm{new}}(44, [\chi])4^{\oplus 4}\oplusS2new(88,[χ])S_{2}^{\mathrm{new}}(88, [\chi])2^{\oplus 2}\oplusS2new(121,[χ])S_{2}^{\mathrm{new}}(121, [\chi])4^{\oplus 4}\oplusS2new(242,[χ])S_{2}^{\mathrm{new}}(242, [\chi])3^{\oplus 3}\oplusS2new(484,[χ])S_{2}^{\mathrm{new}}(484, [\chi])2^{\oplus 2}