Defining parameters
Level: | \( N \) | \(=\) | \( 972 = 2^{2} \cdot 3^{5} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 972.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(324\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(972, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 378 | 24 | 354 |
Cusp forms | 270 | 24 | 246 |
Eisenstein series | 108 | 0 | 108 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(972, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(972, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(972, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(162, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(243, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(324, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(486, [\chi])\)\(^{\oplus 2}\)