Properties

Label 972.2.e
Level $972$
Weight $2$
Character orbit 972.e
Rep. character $\chi_{972}(325,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $24$
Newform subspaces $7$
Sturm bound $324$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 972 = 2^{2} \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 972.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 7 \)
Sturm bound: \(324\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(5\), \(7\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(972, [\chi])\).

Total New Old
Modular forms 378 24 354
Cusp forms 270 24 246
Eisenstein series 108 0 108

Trace form

\( 24 q + 3 q^{7} + 3 q^{13} - 6 q^{19} - 12 q^{25} - 6 q^{31} - 6 q^{37} - 6 q^{43} - 9 q^{49} + 36 q^{55} - 24 q^{61} - 24 q^{67} + 48 q^{73} - 15 q^{79} + 72 q^{85} + 60 q^{91} + 75 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(972, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
972.2.e.a 972.e 9.c $2$ $7.761$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 972.2.a.d \(0\) \(0\) \(0\) \(-5\) $\mathrm{U}(1)[D_{3}]$ \(q+(-5+5\zeta_{6})q^{7}-5\zeta_{6}q^{13}-7q^{19}+\cdots\)
972.2.e.b 972.e 9.c $2$ $7.761$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 972.2.a.c \(0\) \(0\) \(0\) \(1\) $\mathrm{U}(1)[D_{3}]$ \(q+(1-\zeta_{6})q^{7}-2\zeta_{6}q^{13}+8q^{19}+(5+\cdots)q^{25}+\cdots\)
972.2.e.c 972.e 9.c $2$ $7.761$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 972.2.a.b \(0\) \(0\) \(0\) \(1\) $\mathrm{U}(1)[D_{3}]$ \(q+(1-\zeta_{6})q^{7}+7\zeta_{6}q^{13}-q^{19}+(5+\cdots)q^{25}+\cdots\)
972.2.e.d 972.e 9.c $2$ $7.761$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 972.2.a.a \(0\) \(0\) \(0\) \(4\) $\mathrm{U}(1)[D_{3}]$ \(q+(4-4\zeta_{6})q^{7}-5\zeta_{6}q^{13}-7q^{19}+\cdots\)
972.2.e.e 972.e 9.c $4$ $7.761$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 972.2.a.e \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{5}+2\beta _{2}q^{7}+(-\beta _{1}-\beta _{3})q^{11}+\cdots\)
972.2.e.f 972.e 9.c $6$ $7.761$ \(\Q(\zeta_{18})\) None 972.2.a.f \(0\) \(0\) \(0\) \(3\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta_{4} q^{5}+(\beta_{5}-\beta_{2}+\beta_1)q^{7}+(-\beta_{5}-3\beta_1)q^{11}+\cdots\)
972.2.e.g 972.e 9.c $6$ $7.761$ \(\Q(\zeta_{18})\) None 972.2.a.f \(0\) \(0\) \(0\) \(3\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta_{2} q^{5}+(\beta_{5}-\beta_{4}+\beta_{3}+\cdots+1)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(972, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(972, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(162, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(243, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(324, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(486, [\chi])\)\(^{\oplus 2}\)