Properties

Label 975.1.cj
Level $975$
Weight $1$
Character orbit 975.cj
Rep. character $\chi_{975}(146,\cdot)$
Character field $\Q(\zeta_{30})$
Dimension $16$
Newform subspaces $1$
Sturm bound $140$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 975.cj (of order \(30\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 975 \)
Character field: \(\Q(\zeta_{30})\)
Newform subspaces: \( 1 \)
Sturm bound: \(140\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(975, [\chi])\).

Total New Old
Modular forms 48 48 0
Cusp forms 16 16 0
Eisenstein series 32 32 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 0 0 16

Trace form

\( 16 q - 6 q^{4} - 6 q^{6} - 8 q^{7} - 2 q^{9} + 6 q^{10} + 4 q^{13} + 2 q^{15} + 2 q^{19} + 8 q^{22} - 8 q^{24} + 4 q^{25} - 6 q^{28} + 6 q^{33} - 8 q^{34} - 4 q^{36} - 2 q^{37} + 4 q^{40} - 6 q^{42} + 4 q^{43}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(975, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
975.1.cj.a 975.cj 975.bj $16$ $0.487$ \(\Q(\zeta_{60})\) $A_{5}$ None None 975.1.cj.a \(0\) \(0\) \(0\) \(-8\) \(q+(-\zeta_{60}^{11}+\zeta_{60}^{17})q^{2}+\zeta_{60}^{23}q^{3}+\cdots\)