Defining parameters
Level: | \( N \) | \(=\) | \( 975 = 3 \cdot 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 975.cj (of order \(30\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 975 \) |
Character field: | \(\Q(\zeta_{30})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(140\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(975, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 48 | 48 | 0 |
Cusp forms | 16 | 16 | 0 |
Eisenstein series | 32 | 32 | 0 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 0 | 0 | 0 | 16 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(975, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
975.1.cj.a | $16$ | $0.487$ | \(\Q(\zeta_{60})\) | $A_{5}$ | None | None | \(0\) | \(0\) | \(0\) | \(-8\) | \(q+(-\zeta_{60}^{11}+\zeta_{60}^{17})q^{2}+\zeta_{60}^{23}q^{3}+\cdots\) |