Properties

Label 975.2
Level 975
Weight 2
Dimension 22496
Nonzero newspaces 40
Newform subspaces 243
Sturm bound 134400
Trace bound 6

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 40 \)
Newform subspaces: \( 243 \)
Sturm bound: \(134400\)
Trace bound: \(6\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(975))\).

Total New Old
Modular forms 34944 23400 11544
Cusp forms 32257 22496 9761
Eisenstein series 2687 904 1783

Trace form

\( 22496 q + 2 q^{2} - 60 q^{3} - 106 q^{4} + 12 q^{5} - 80 q^{6} - 96 q^{7} + 60 q^{8} - 50 q^{9} - 124 q^{10} + 20 q^{11} - 14 q^{12} - 102 q^{13} + 72 q^{14} - 68 q^{15} - 146 q^{16} + 22 q^{17} - 52 q^{18}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(975))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
975.2.a \(\chi_{975}(1, \cdot)\) 975.2.a.a 1 1
975.2.a.b 1
975.2.a.c 1
975.2.a.d 1
975.2.a.e 1
975.2.a.f 1
975.2.a.g 1
975.2.a.h 1
975.2.a.i 1
975.2.a.j 1
975.2.a.k 1
975.2.a.l 2
975.2.a.m 3
975.2.a.n 3
975.2.a.o 3
975.2.a.p 3
975.2.a.q 3
975.2.a.r 5
975.2.a.s 5
975.2.b \(\chi_{975}(376, \cdot)\) 975.2.b.a 2 1
975.2.b.b 2
975.2.b.c 2
975.2.b.d 2
975.2.b.e 2
975.2.b.f 4
975.2.b.g 4
975.2.b.h 4
975.2.b.i 6
975.2.b.j 6
975.2.b.k 6
975.2.b.l 6
975.2.c \(\chi_{975}(274, \cdot)\) 975.2.c.a 2 1
975.2.c.b 2
975.2.c.c 2
975.2.c.d 2
975.2.c.e 2
975.2.c.f 2
975.2.c.g 2
975.2.c.h 4
975.2.c.i 6
975.2.c.j 6
975.2.c.k 6
975.2.h \(\chi_{975}(649, \cdot)\) 975.2.h.a 2 1
975.2.h.b 2
975.2.h.c 2
975.2.h.d 2
975.2.h.e 4
975.2.h.f 4
975.2.h.g 4
975.2.h.h 8
975.2.h.i 12
975.2.i \(\chi_{975}(451, \cdot)\) 975.2.i.a 2 2
975.2.i.b 2
975.2.i.c 2
975.2.i.d 2
975.2.i.e 2
975.2.i.f 2
975.2.i.g 2
975.2.i.h 2
975.2.i.i 2
975.2.i.j 4
975.2.i.k 4
975.2.i.l 6
975.2.i.m 6
975.2.i.n 12
975.2.i.o 12
975.2.i.p 12
975.2.i.q 12
975.2.k \(\chi_{975}(307, \cdot)\) 975.2.k.a 4 2
975.2.k.b 4
975.2.k.c 8
975.2.k.d 28
975.2.k.e 40
975.2.m \(\chi_{975}(443, \cdot)\) 975.2.m.a 32 2
975.2.m.b 32
975.2.m.c 32
975.2.m.d 48
975.2.n \(\chi_{975}(749, \cdot)\) 975.2.n.a 4 2
975.2.n.b 4
975.2.n.c 4
975.2.n.d 4
975.2.n.e 4
975.2.n.f 4
975.2.n.g 4
975.2.n.h 4
975.2.n.i 4
975.2.n.j 4
975.2.n.k 4
975.2.n.l 4
975.2.n.m 8
975.2.n.n 8
975.2.n.o 8
975.2.n.p 8
975.2.n.q 40
975.2.n.r 40
975.2.o \(\chi_{975}(476, \cdot)\) 975.2.o.a 4 2
975.2.o.b 4
975.2.o.c 4
975.2.o.d 4
975.2.o.e 4
975.2.o.f 4
975.2.o.g 4
975.2.o.h 4
975.2.o.i 4
975.2.o.j 4
975.2.o.k 4
975.2.o.l 8
975.2.o.m 8
975.2.o.n 8
975.2.o.o 8
975.2.o.p 40
975.2.o.q 48
975.2.s \(\chi_{975}(818, \cdot)\) 975.2.s.a 8 2
975.2.s.b 8
975.2.s.c 16
975.2.s.d 32
975.2.s.e 32
975.2.s.f 64
975.2.t \(\chi_{975}(268, \cdot)\) 975.2.t.a 4 2
975.2.t.b 4
975.2.t.c 8
975.2.t.d 28
975.2.t.e 40
975.2.v \(\chi_{975}(196, \cdot)\) 975.2.v.a 52 4
975.2.v.b 52
975.2.v.c 68
975.2.v.d 68
975.2.w \(\chi_{975}(49, \cdot)\) 975.2.w.a 4 2
975.2.w.b 4
975.2.w.c 4
975.2.w.d 4
975.2.w.e 4
975.2.w.f 4
975.2.w.g 8
975.2.w.h 8
975.2.w.i 8
975.2.w.j 8
975.2.w.k 24
975.2.bb \(\chi_{975}(724, \cdot)\) 975.2.bb.a 4 2
975.2.bb.b 4
975.2.bb.c 4
975.2.bb.d 4
975.2.bb.e 4
975.2.bb.f 4
975.2.bb.g 4
975.2.bb.h 4
975.2.bb.i 8
975.2.bb.j 12
975.2.bb.k 12
975.2.bb.l 24
975.2.bc \(\chi_{975}(751, \cdot)\) 975.2.bc.a 2 2
975.2.bc.b 2
975.2.bc.c 2
975.2.bc.d 2
975.2.bc.e 2
975.2.bc.f 2
975.2.bc.g 2
975.2.bc.h 4
975.2.bc.i 8
975.2.bc.j 8
975.2.bc.k 12
975.2.bc.l 12
975.2.bc.m 16
975.2.bc.n 16
975.2.bf \(\chi_{975}(64, \cdot)\) 975.2.bf.a 288 4
975.2.bg \(\chi_{975}(79, \cdot)\) 975.2.bg.a 104 4
975.2.bg.b 136
975.2.bh \(\chi_{975}(181, \cdot)\) 975.2.bh.a 8 4
975.2.bh.b 128
975.2.bh.c 136
975.2.bl \(\chi_{975}(193, \cdot)\) 975.2.bl.a 8 4
975.2.bl.b 8
975.2.bl.c 8
975.2.bl.d 8
975.2.bl.e 16
975.2.bl.f 16
975.2.bl.g 16
975.2.bl.h 32
975.2.bl.i 56
975.2.bn \(\chi_{975}(218, \cdot)\) 975.2.bn.a 8 4
975.2.bn.b 8
975.2.bn.c 64
975.2.bn.d 96
975.2.bn.e 144
975.2.bo \(\chi_{975}(176, \cdot)\) 975.2.bo.a 4 4
975.2.bo.b 4
975.2.bo.c 4
975.2.bo.d 8
975.2.bo.e 72
975.2.bo.f 72
975.2.bo.g 72
975.2.bo.h 96
975.2.bp \(\chi_{975}(149, \cdot)\) 975.2.bp.a 4 4
975.2.bp.b 4
975.2.bp.c 4
975.2.bp.d 4
975.2.bp.e 8
975.2.bp.f 8
975.2.bp.g 72
975.2.bp.h 72
975.2.bp.i 72
975.2.bp.j 72
975.2.bt \(\chi_{975}(68, \cdot)\) 975.2.bt.a 8 4
975.2.bt.b 8
975.2.bt.c 8
975.2.bt.d 8
975.2.bt.e 8
975.2.bt.f 8
975.2.bt.g 8
975.2.bt.h 8
975.2.bt.i 8
975.2.bt.j 8
975.2.bt.k 48
975.2.bt.l 96
975.2.bt.m 96
975.2.bu \(\chi_{975}(7, \cdot)\) 975.2.bu.a 8 4
975.2.bu.b 8
975.2.bu.c 8
975.2.bu.d 8
975.2.bu.e 16
975.2.bu.f 16
975.2.bu.g 16
975.2.bu.h 32
975.2.bu.i 56
975.2.bw \(\chi_{975}(16, \cdot)\) 975.2.bw.a 288 8
975.2.bw.b 288
975.2.bx \(\chi_{975}(73, \cdot)\) 975.2.bx.a 560 8
975.2.bz \(\chi_{975}(38, \cdot)\) 975.2.bz.a 64 8
975.2.bz.b 1024
975.2.cd \(\chi_{975}(86, \cdot)\) 975.2.cd.a 1088 8
975.2.ce \(\chi_{975}(44, \cdot)\) 975.2.ce.a 1088 8
975.2.cf \(\chi_{975}(53, \cdot)\) 975.2.cf.a 960 8
975.2.ci \(\chi_{975}(112, \cdot)\) 975.2.ci.a 560 8
975.2.cl \(\chi_{975}(121, \cdot)\) 975.2.cl.a 272 8
975.2.cl.b 272
975.2.cm \(\chi_{975}(94, \cdot)\) 975.2.cm.a 544 8
975.2.cn \(\chi_{975}(4, \cdot)\) 975.2.cn.a 576 8
975.2.cq \(\chi_{975}(28, \cdot)\) 975.2.cq.a 1120 16
975.2.cs \(\chi_{975}(113, \cdot)\) 975.2.cs.a 2176 16
975.2.cw \(\chi_{975}(59, \cdot)\) 975.2.cw.a 2176 16
975.2.cx \(\chi_{975}(11, \cdot)\) 975.2.cx.a 2176 16
975.2.cy \(\chi_{975}(17, \cdot)\) 975.2.cy.a 2176 16
975.2.db \(\chi_{975}(67, \cdot)\) 975.2.db.a 1120 16

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(975))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(975)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(65))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(195))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(325))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(975))\)\(^{\oplus 1}\)