Properties

Label 975.6.a
Level $975$
Weight $6$
Character orbit 975.a
Rep. character $\chi_{975}(1,\cdot)$
Character field $\Q$
Dimension $190$
Newform subspaces $25$
Sturm bound $840$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 975.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 25 \)
Sturm bound: \(840\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(2\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(975))\).

Total New Old
Modular forms 712 190 522
Cusp forms 688 190 498
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(5\)\(13\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(23\)
\(+\)\(+\)\(-\)\(-\)\(22\)
\(+\)\(-\)\(+\)\(-\)\(26\)
\(+\)\(-\)\(-\)\(+\)\(24\)
\(-\)\(+\)\(+\)\(-\)\(25\)
\(-\)\(+\)\(-\)\(+\)\(20\)
\(-\)\(-\)\(+\)\(+\)\(22\)
\(-\)\(-\)\(-\)\(-\)\(28\)
Plus space\(+\)\(89\)
Minus space\(-\)\(101\)

Trace form

\( 190 q + 4 q^{2} + 3104 q^{4} - 108 q^{6} - 508 q^{7} + 264 q^{8} + 15390 q^{9} + 892 q^{11} - 396 q^{12} - 338 q^{13} - 5080 q^{14} + 49796 q^{16} + 892 q^{17} + 324 q^{18} + 812 q^{19} + 1764 q^{21} - 332 q^{22}+ \cdots + 72252 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(975))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 5 13
975.6.a.a 975.a 1.a $1$ $156.374$ \(\Q\) None 39.6.a.a \(-2\) \(-9\) \(0\) \(112\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}-9q^{3}-28q^{4}+18q^{6}+112q^{7}+\cdots\)
975.6.a.b 975.a 1.a $1$ $156.374$ \(\Q\) None 195.6.a.a \(-2\) \(-9\) \(0\) \(168\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}-9q^{3}-28q^{4}+18q^{6}+168q^{7}+\cdots\)
975.6.a.c 975.a 1.a $2$ $156.374$ \(\Q(\sqrt{14}) \) None 39.6.a.b \(4\) \(18\) \(0\) \(-72\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(2+\beta )q^{2}+9q^{3}+(28+4\beta )q^{4}+(18+\cdots)q^{6}+\cdots\)
975.6.a.d 975.a 1.a $3$ $156.374$ 3.3.125308.1 None 39.6.a.c \(0\) \(27\) \(0\) \(-84\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+9q^{3}+(5+2\beta _{1}+\beta _{2})q^{4}+\cdots\)
975.6.a.e 975.a 1.a $4$ $156.374$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 39.6.a.d \(-6\) \(-36\) \(0\) \(-72\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-2-\beta _{1})q^{2}-9q^{3}+(33-3\beta _{1}+\cdots)q^{4}+\cdots\)
975.6.a.f 975.a 1.a $4$ $156.374$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 195.6.a.e \(-2\) \(36\) \(0\) \(-87\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+9q^{3}+(14-\beta _{1}+\beta _{3})q^{4}+\cdots\)
975.6.a.g 975.a 1.a $4$ $156.374$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 195.6.a.d \(3\) \(36\) \(0\) \(87\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+9q^{3}+(3-3\beta _{1}+2\beta _{3})q^{4}+\cdots\)
975.6.a.h 975.a 1.a $4$ $156.374$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 195.6.a.c \(7\) \(-36\) \(0\) \(-73\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(2-\beta _{1})q^{2}-9q^{3}+(3-2\beta _{1}-\beta _{2}+\cdots)q^{4}+\cdots\)
975.6.a.i 975.a 1.a $4$ $156.374$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 195.6.a.b \(12\) \(-36\) \(0\) \(73\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(3-\beta _{1})q^{2}-9q^{3}+(13-3\beta _{1}+2\beta _{3})q^{4}+\cdots\)
975.6.a.j 975.a 1.a $5$ $156.374$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 195.6.a.g \(-5\) \(45\) \(0\) \(-164\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{1})q^{2}+9q^{3}+(8+4\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
975.6.a.k 975.a 1.a $5$ $156.374$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 195.6.a.f \(-1\) \(-45\) \(0\) \(-128\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-9q^{3}+(7+4\beta _{1}+\beta _{2})q^{4}+\cdots\)
975.6.a.l 975.a 1.a $6$ $156.374$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 195.6.a.h \(-2\) \(-54\) \(0\) \(-236\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-9q^{3}+(35+\beta _{3})q^{4}+9\beta _{1}q^{6}+\cdots\)
975.6.a.m 975.a 1.a $7$ $156.374$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 195.6.a.i \(-2\) \(63\) \(0\) \(-32\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+9q^{3}+(26-\beta _{1}+\beta _{2})q^{4}+\cdots\)
975.6.a.n 975.a 1.a $9$ $156.374$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 975.6.a.n \(-10\) \(81\) \(0\) \(-251\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{1})q^{2}+9q^{3}+(14+\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
975.6.a.o 975.a 1.a $9$ $156.374$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 975.6.a.o \(-8\) \(81\) \(0\) \(55\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+9q^{3}+(14-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
975.6.a.p 975.a 1.a $9$ $156.374$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 975.6.a.o \(8\) \(-81\) \(0\) \(-55\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}-9q^{3}+(14-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
975.6.a.q 975.a 1.a $9$ $156.374$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 975.6.a.n \(10\) \(-81\) \(0\) \(251\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1})q^{2}-9q^{3}+(14+\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
975.6.a.r 975.a 1.a $11$ $156.374$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 975.6.a.r \(-2\) \(99\) \(0\) \(55\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+9q^{3}+(20+\beta _{1}+\beta _{2})q^{4}+\cdots\)
975.6.a.s 975.a 1.a $11$ $156.374$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 975.6.a.s \(0\) \(-99\) \(0\) \(-141\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-9q^{3}+(20+\beta _{1}+\beta _{2})q^{4}+\cdots\)
975.6.a.t 975.a 1.a $11$ $156.374$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 975.6.a.s \(0\) \(99\) \(0\) \(141\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+9q^{3}+(20+\beta _{1}+\beta _{2})q^{4}+\cdots\)
975.6.a.u 975.a 1.a $11$ $156.374$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 975.6.a.r \(2\) \(-99\) \(0\) \(-55\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-9q^{3}+(20+\beta _{1}+\beta _{2})q^{4}+\cdots\)
975.6.a.v 975.a 1.a $13$ $156.374$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None 195.6.c.a \(-9\) \(-117\) \(0\) \(153\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}-9q^{3}+(13-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
975.6.a.w 975.a 1.a $13$ $156.374$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None 195.6.c.a \(9\) \(117\) \(0\) \(-153\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+9q^{3}+(13-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
975.6.a.x 975.a 1.a $17$ $156.374$ \(\mathbb{Q}[x]/(x^{17} - \cdots)\) None 195.6.c.b \(-9\) \(-153\) \(0\) \(-349\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}-9q^{3}+(18+\beta _{2})q^{4}+\cdots\)
975.6.a.y 975.a 1.a $17$ $156.374$ \(\mathbb{Q}[x]/(x^{17} - \cdots)\) None 195.6.c.b \(9\) \(153\) \(0\) \(349\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+9q^{3}+(18+\beta _{2})q^{4}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(975))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(975)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(195))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(325))\)\(^{\oplus 2}\)