Defining parameters
Level: | \( N \) | \(=\) | \( 975 = 3 \cdot 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 975.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 25 \) | ||
Sturm bound: | \(840\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(2\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(975))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 712 | 190 | 522 |
Cusp forms | 688 | 190 | 498 |
Eisenstein series | 24 | 0 | 24 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | \(13\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(23\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(22\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(26\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(24\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(25\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(20\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(22\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(28\) |
Plus space | \(+\) | \(89\) | ||
Minus space | \(-\) | \(101\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(975))\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(975))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(975)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(195))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(325))\)\(^{\oplus 2}\)