Defining parameters
Level: | \( N \) | \(=\) | \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 980.e (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\), \(11\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(980, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 192 | 20 | 172 |
Cusp forms | 144 | 20 | 124 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(980, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
980.2.e.a | $2$ | $7.825$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q+(-\beta-1)q^{5}+3 q^{9}+2\beta q^{13}+\cdots\) |
980.2.e.b | $2$ | $7.825$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(4\) | \(0\) | \(q+3 i q^{3}+(i+2)q^{5}-6 q^{9}+3 q^{11}+\cdots\) |
980.2.e.c | $4$ | $7.825$ | \(\Q(\sqrt{-3}, \sqrt{-19})\) | None | \(0\) | \(0\) | \(-1\) | \(0\) | \(q-\beta _{2}q^{3}+\beta _{1}q^{5}+(-2-\beta _{1}-\beta _{3})q^{11}+\cdots\) |
980.2.e.d | $4$ | $7.825$ | \(\Q(\sqrt{-5}, \sqrt{-21})\) | \(\Q(\sqrt{-35}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{3}+\beta _{2}q^{5}+(-4+\beta _{3})q^{9}+(1+\cdots)q^{11}+\cdots\) |
980.2.e.e | $4$ | $7.825$ | \(\Q(\sqrt{2}, \sqrt{-3})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{2}q^{3}+(\beta _{1}+\beta _{2})q^{5}-q^{11}-\beta _{2}q^{13}+\cdots\) |
980.2.e.f | $4$ | $7.825$ | \(\Q(\sqrt{-3}, \sqrt{-19})\) | None | \(0\) | \(0\) | \(1\) | \(0\) | \(q-\beta _{2}q^{3}-\beta _{3}q^{5}+(-2-\beta _{1}-\beta _{3})q^{11}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(980, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(980, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(490, [\chi])\)\(^{\oplus 2}\)