Properties

Label 980.2.x
Level $980$
Weight $2$
Character orbit 980.x
Rep. character $\chi_{980}(67,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $448$
Newform subspaces $14$
Sturm bound $336$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.x (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 140 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 14 \)
Sturm bound: \(336\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(3\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(980, [\chi])\).

Total New Old
Modular forms 736 512 224
Cusp forms 608 448 160
Eisenstein series 128 64 64

Trace form

\( 448 q + 2 q^{2} + 4 q^{5} + 16 q^{6} - 4 q^{8} + O(q^{10}) \) \( 448 q + 2 q^{2} + 4 q^{5} + 16 q^{6} - 4 q^{8} + 2 q^{10} - 10 q^{12} + 16 q^{13} + 12 q^{16} + 4 q^{17} - 20 q^{18} + 24 q^{20} - 8 q^{22} + 4 q^{25} - 12 q^{26} + 52 q^{30} + 42 q^{32} + 36 q^{33} + 4 q^{37} - 12 q^{38} + 22 q^{40} + 16 q^{41} + 44 q^{45} + 52 q^{46} - 12 q^{48} + 100 q^{50} - 64 q^{52} + 4 q^{53} - 120 q^{57} - 66 q^{58} + 30 q^{60} + 8 q^{61} - 56 q^{62} + 36 q^{65} - 100 q^{66} - 4 q^{68} - 60 q^{72} + 20 q^{73} - 112 q^{76} - 280 q^{78} - 36 q^{80} + 144 q^{81} + 46 q^{82} - 80 q^{85} - 88 q^{86} - 40 q^{88} - 64 q^{90} - 68 q^{92} - 12 q^{93} + 48 q^{96} + 96 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(980, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
980.2.x.a 980.x 140.w $4$ $7.825$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-1}) \) 980.2.k.b \(-2\) \(0\) \(-2\) \(0\) $\mathrm{U}(1)[D_{12}]$ \(q+(-1-\zeta_{12}+\zeta_{12}^{2})q^{2}+(2\zeta_{12}-2\zeta_{12}^{3})q^{4}+\cdots\)
980.2.x.b 980.x 140.w $4$ $7.825$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-1}) \) 980.2.k.b \(-2\) \(0\) \(2\) \(0\) $\mathrm{U}(1)[D_{12}]$ \(q+(-1-\zeta_{12}+\zeta_{12}^{2})q^{2}+(2\zeta_{12}-2\zeta_{12}^{3})q^{4}+\cdots\)
980.2.x.c 980.x 140.w $4$ $7.825$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-1}) \) 20.2.e.a \(2\) \(0\) \(-4\) \(0\) $\mathrm{U}(1)[D_{12}]$ \(q+(1+\zeta_{12}-\zeta_{12}^{2})q^{2}+(2\zeta_{12}-2\zeta_{12}^{3})q^{4}+\cdots\)
980.2.x.d 980.x 140.w $4$ $7.825$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-1}) \) 20.2.e.a \(2\) \(0\) \(4\) \(0\) $\mathrm{U}(1)[D_{12}]$ \(q+(1+\zeta_{12}-\zeta_{12}^{2})q^{2}+(2\zeta_{12}-2\zeta_{12}^{3})q^{4}+\cdots\)
980.2.x.e 980.x 140.w $8$ $7.825$ \(\Q(\zeta_{24})\) None 980.2.k.h \(-8\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-1-\zeta_{24}^{6})q^{2}+(2\zeta_{24}-\zeta_{24}^{5}+\cdots)q^{3}+\cdots\)
980.2.x.f 980.x 140.w $8$ $7.825$ 8.0.\(\cdots\).9 None 140.2.w.a \(-4\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-\beta _{2}-\beta _{4}+\beta _{6})q^{2}+\beta _{5}q^{3}+2\beta _{2}q^{4}+\cdots\)
980.2.x.g 980.x 140.w $8$ $7.825$ \(\Q(\zeta_{24})\) \(\Q(\sqrt{-1}) \) 980.2.k.f \(-4\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{12}]$ \(q+(-1-\zeta_{24}^{2}+\zeta_{24}^{4})q^{2}+(2\zeta_{24}^{2}+\cdots)q^{4}+\cdots\)
980.2.x.h 980.x 140.w $8$ $7.825$ \(\Q(\zeta_{24})\) \(\Q(\sqrt{-1}) \) 980.2.k.d \(4\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{12}]$ \(q+(1-\zeta_{24}^{2}-\zeta_{24}^{4})q^{2}+(-2\zeta_{24}^{2}+\cdots)q^{4}+\cdots\)
980.2.x.i 980.x 140.w $8$ $7.825$ \(\Q(\zeta_{24})\) None 980.2.k.h \(4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(1+\zeta_{24}^{2}-\zeta_{24}^{4})q^{2}+(2\zeta_{24}-\zeta_{24}^{5}+\cdots)q^{3}+\cdots\)
980.2.x.j 980.x 140.w $64$ $7.825$ None 980.2.k.i \(4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$
980.2.x.k 980.x 140.w $72$ $7.825$ None 140.2.k.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$
980.2.x.l 980.x 140.w $72$ $7.825$ None 140.2.k.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$
980.2.x.m 980.x 140.w $72$ $7.825$ None 140.2.w.b \(2\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{12}]$
980.2.x.n 980.x 140.w $112$ $7.825$ None 980.2.k.m \(4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(980, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(980, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 2}\)