Properties

Label 983.6.a.b.1.20
Level $983$
Weight $6$
Character 983.1
Self dual yes
Analytic conductor $157.657$
Analytic rank $0$
Dimension $218$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [983,6,Mod(1,983)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(983, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("983.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 983 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 983.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(157.657294876\)
Analytic rank: \(0\)
Dimension: \(218\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.20
Character \(\chi\) \(=\) 983.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.61332 q^{2} +27.9669 q^{3} +60.4159 q^{4} -41.3834 q^{5} -268.854 q^{6} +221.300 q^{7} -273.171 q^{8} +539.145 q^{9} +397.832 q^{10} +72.0069 q^{11} +1689.64 q^{12} +378.554 q^{13} -2127.43 q^{14} -1157.36 q^{15} +692.774 q^{16} +447.425 q^{17} -5182.98 q^{18} -2941.48 q^{19} -2500.22 q^{20} +6189.06 q^{21} -692.226 q^{22} -3381.87 q^{23} -7639.74 q^{24} -1412.41 q^{25} -3639.16 q^{26} +8282.26 q^{27} +13370.0 q^{28} -1168.22 q^{29} +11126.1 q^{30} +6533.14 q^{31} +2081.63 q^{32} +2013.81 q^{33} -4301.24 q^{34} -9158.14 q^{35} +32573.0 q^{36} +5918.56 q^{37} +28277.4 q^{38} +10587.0 q^{39} +11304.8 q^{40} -6233.63 q^{41} -59497.4 q^{42} +8857.78 q^{43} +4350.36 q^{44} -22311.7 q^{45} +32511.0 q^{46} -3800.48 q^{47} +19374.7 q^{48} +32166.6 q^{49} +13578.0 q^{50} +12513.1 q^{51} +22870.7 q^{52} +15138.0 q^{53} -79620.0 q^{54} -2979.89 q^{55} -60452.7 q^{56} -82264.1 q^{57} +11230.5 q^{58} -11335.5 q^{59} -69923.3 q^{60} +41481.0 q^{61} -62805.2 q^{62} +119313. q^{63} -42180.1 q^{64} -15665.9 q^{65} -19359.4 q^{66} +38017.7 q^{67} +27031.6 q^{68} -94580.3 q^{69} +88040.2 q^{70} -2192.43 q^{71} -147279. q^{72} -30480.5 q^{73} -56897.0 q^{74} -39500.7 q^{75} -177712. q^{76} +15935.1 q^{77} -101776. q^{78} +41047.7 q^{79} -28669.4 q^{80} +100616. q^{81} +59925.9 q^{82} +111799. q^{83} +373918. q^{84} -18516.0 q^{85} -85152.6 q^{86} -32671.5 q^{87} -19670.2 q^{88} +29925.8 q^{89} +214489. q^{90} +83773.9 q^{91} -204319. q^{92} +182711. q^{93} +36535.2 q^{94} +121729. q^{95} +58216.5 q^{96} +117393. q^{97} -309228. q^{98} +38822.2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 218 q + 35 q^{2} + 70 q^{3} + 3685 q^{4} + 253 q^{5} + 529 q^{6} + 1567 q^{7} + 1695 q^{8} + 19812 q^{9} + 2133 q^{10} + 1752 q^{11} + 3512 q^{12} + 5990 q^{13} + 2319 q^{14} + 4639 q^{15} + 66105 q^{16}+ \cdots + 627643 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −9.61332 −1.69941 −0.849705 0.527258i \(-0.823220\pi\)
−0.849705 + 0.527258i \(0.823220\pi\)
\(3\) 27.9669 1.79408 0.897038 0.441954i \(-0.145715\pi\)
0.897038 + 0.441954i \(0.145715\pi\)
\(4\) 60.4159 1.88800
\(5\) −41.3834 −0.740289 −0.370145 0.928974i \(-0.620692\pi\)
−0.370145 + 0.928974i \(0.620692\pi\)
\(6\) −268.854 −3.04887
\(7\) 221.300 1.70701 0.853505 0.521085i \(-0.174473\pi\)
0.853505 + 0.521085i \(0.174473\pi\)
\(8\) −273.171 −1.50907
\(9\) 539.145 2.21871
\(10\) 397.832 1.25806
\(11\) 72.0069 0.179429 0.0897145 0.995968i \(-0.471405\pi\)
0.0897145 + 0.995968i \(0.471405\pi\)
\(12\) 1689.64 3.38721
\(13\) 378.554 0.621254 0.310627 0.950532i \(-0.399461\pi\)
0.310627 + 0.950532i \(0.399461\pi\)
\(14\) −2127.43 −2.90091
\(15\) −1157.36 −1.32813
\(16\) 692.774 0.676537
\(17\) 447.425 0.375490 0.187745 0.982218i \(-0.439882\pi\)
0.187745 + 0.982218i \(0.439882\pi\)
\(18\) −5182.98 −3.77049
\(19\) −2941.48 −1.86931 −0.934657 0.355550i \(-0.884293\pi\)
−0.934657 + 0.355550i \(0.884293\pi\)
\(20\) −2500.22 −1.39766
\(21\) 6189.06 3.06250
\(22\) −692.226 −0.304924
\(23\) −3381.87 −1.33302 −0.666511 0.745495i \(-0.732213\pi\)
−0.666511 + 0.745495i \(0.732213\pi\)
\(24\) −7639.74 −2.70739
\(25\) −1412.41 −0.451972
\(26\) −3639.16 −1.05577
\(27\) 8282.26 2.18645
\(28\) 13370.0 3.22283
\(29\) −1168.22 −0.257947 −0.128973 0.991648i \(-0.541168\pi\)
−0.128973 + 0.991648i \(0.541168\pi\)
\(30\) 11126.1 2.25705
\(31\) 6533.14 1.22101 0.610503 0.792014i \(-0.290967\pi\)
0.610503 + 0.792014i \(0.290967\pi\)
\(32\) 2081.63 0.359358
\(33\) 2013.81 0.321909
\(34\) −4301.24 −0.638112
\(35\) −9158.14 −1.26368
\(36\) 32573.0 4.18891
\(37\) 5918.56 0.710741 0.355371 0.934725i \(-0.384355\pi\)
0.355371 + 0.934725i \(0.384355\pi\)
\(38\) 28277.4 3.17673
\(39\) 10587.0 1.11458
\(40\) 11304.8 1.11715
\(41\) −6233.63 −0.579137 −0.289569 0.957157i \(-0.593512\pi\)
−0.289569 + 0.957157i \(0.593512\pi\)
\(42\) −59497.4 −5.20445
\(43\) 8857.78 0.730556 0.365278 0.930898i \(-0.380974\pi\)
0.365278 + 0.930898i \(0.380974\pi\)
\(44\) 4350.36 0.338761
\(45\) −22311.7 −1.64248
\(46\) 32511.0 2.26535
\(47\) −3800.48 −0.250954 −0.125477 0.992097i \(-0.540046\pi\)
−0.125477 + 0.992097i \(0.540046\pi\)
\(48\) 19374.7 1.21376
\(49\) 32166.6 1.91388
\(50\) 13578.0 0.768085
\(51\) 12513.1 0.673657
\(52\) 22870.7 1.17293
\(53\) 15138.0 0.740248 0.370124 0.928982i \(-0.379315\pi\)
0.370124 + 0.928982i \(0.379315\pi\)
\(54\) −79620.0 −3.71568
\(55\) −2979.89 −0.132829
\(56\) −60452.7 −2.57600
\(57\) −82264.1 −3.35369
\(58\) 11230.5 0.438358
\(59\) −11335.5 −0.423948 −0.211974 0.977275i \(-0.567989\pi\)
−0.211974 + 0.977275i \(0.567989\pi\)
\(60\) −69923.3 −2.50752
\(61\) 41481.0 1.42733 0.713665 0.700488i \(-0.247034\pi\)
0.713665 + 0.700488i \(0.247034\pi\)
\(62\) −62805.2 −2.07499
\(63\) 119313. 3.78735
\(64\) −42180.1 −1.28723
\(65\) −15665.9 −0.459908
\(66\) −19359.4 −0.547056
\(67\) 38017.7 1.03466 0.517332 0.855785i \(-0.326925\pi\)
0.517332 + 0.855785i \(0.326925\pi\)
\(68\) 27031.6 0.708924
\(69\) −94580.3 −2.39154
\(70\) 88040.2 2.14751
\(71\) −2192.43 −0.0516154 −0.0258077 0.999667i \(-0.508216\pi\)
−0.0258077 + 0.999667i \(0.508216\pi\)
\(72\) −147279. −3.34819
\(73\) −30480.5 −0.669446 −0.334723 0.942317i \(-0.608643\pi\)
−0.334723 + 0.942317i \(0.608643\pi\)
\(74\) −56897.0 −1.20784
\(75\) −39500.7 −0.810871
\(76\) −177712. −3.52926
\(77\) 15935.1 0.306287
\(78\) −101776. −1.89412
\(79\) 41047.7 0.739982 0.369991 0.929035i \(-0.379361\pi\)
0.369991 + 0.929035i \(0.379361\pi\)
\(80\) −28669.4 −0.500833
\(81\) 100616. 1.70395
\(82\) 59925.9 0.984192
\(83\) 111799. 1.78132 0.890662 0.454667i \(-0.150242\pi\)
0.890662 + 0.454667i \(0.150242\pi\)
\(84\) 373918. 5.78200
\(85\) −18516.0 −0.277971
\(86\) −85152.6 −1.24151
\(87\) −32671.5 −0.462776
\(88\) −19670.2 −0.270771
\(89\) 29925.8 0.400471 0.200236 0.979748i \(-0.435829\pi\)
0.200236 + 0.979748i \(0.435829\pi\)
\(90\) 214489. 2.79126
\(91\) 83773.9 1.06049
\(92\) −204319. −2.51674
\(93\) 182711. 2.19058
\(94\) 36535.2 0.426473
\(95\) 121729. 1.38383
\(96\) 58216.5 0.644716
\(97\) 117393. 1.26681 0.633406 0.773820i \(-0.281656\pi\)
0.633406 + 0.773820i \(0.281656\pi\)
\(98\) −309228. −3.25247
\(99\) 38822.2 0.398100
\(100\) −85332.1 −0.853321
\(101\) 147248. 1.43630 0.718149 0.695889i \(-0.244989\pi\)
0.718149 + 0.695889i \(0.244989\pi\)
\(102\) −120292. −1.14482
\(103\) −2714.26 −0.0252092 −0.0126046 0.999921i \(-0.504012\pi\)
−0.0126046 + 0.999921i \(0.504012\pi\)
\(104\) −103410. −0.937518
\(105\) −256125. −2.26714
\(106\) −145526. −1.25799
\(107\) −125721. −1.06157 −0.530785 0.847507i \(-0.678103\pi\)
−0.530785 + 0.847507i \(0.678103\pi\)
\(108\) 500380. 4.12801
\(109\) 81943.3 0.660613 0.330307 0.943874i \(-0.392848\pi\)
0.330307 + 0.943874i \(0.392848\pi\)
\(110\) 28646.7 0.225732
\(111\) 165523. 1.27512
\(112\) 153311. 1.15485
\(113\) 226858. 1.67131 0.835656 0.549253i \(-0.185088\pi\)
0.835656 + 0.549253i \(0.185088\pi\)
\(114\) 790831. 5.69930
\(115\) 139953. 0.986822
\(116\) −70579.2 −0.487003
\(117\) 204096. 1.37838
\(118\) 108972. 0.720461
\(119\) 99015.1 0.640965
\(120\) 316159. 2.00425
\(121\) −155866. −0.967805
\(122\) −398770. −2.42562
\(123\) −174335. −1.03902
\(124\) 394706. 2.30526
\(125\) 187774. 1.07488
\(126\) −1.14699e6 −6.43626
\(127\) 60898.0 0.335038 0.167519 0.985869i \(-0.446424\pi\)
0.167519 + 0.985869i \(0.446424\pi\)
\(128\) 338879. 1.82818
\(129\) 247724. 1.31067
\(130\) 150601. 0.781573
\(131\) −275543. −1.40285 −0.701425 0.712743i \(-0.747453\pi\)
−0.701425 + 0.712743i \(0.747453\pi\)
\(132\) 121666. 0.607763
\(133\) −650949. −3.19094
\(134\) −365477. −1.75832
\(135\) −342748. −1.61861
\(136\) −122224. −0.566642
\(137\) −56717.5 −0.258176 −0.129088 0.991633i \(-0.541205\pi\)
−0.129088 + 0.991633i \(0.541205\pi\)
\(138\) 909231. 4.06421
\(139\) 134717. 0.591406 0.295703 0.955280i \(-0.404446\pi\)
0.295703 + 0.955280i \(0.404446\pi\)
\(140\) −553298. −2.38583
\(141\) −106287. −0.450230
\(142\) 21076.5 0.0877157
\(143\) 27258.5 0.111471
\(144\) 373506. 1.50104
\(145\) 48345.0 0.190955
\(146\) 293019. 1.13766
\(147\) 899598. 3.43364
\(148\) 357575. 1.34188
\(149\) 173667. 0.640841 0.320421 0.947275i \(-0.396176\pi\)
0.320421 + 0.947275i \(0.396176\pi\)
\(150\) 379733. 1.37800
\(151\) 90375.5 0.322558 0.161279 0.986909i \(-0.448438\pi\)
0.161279 + 0.986909i \(0.448438\pi\)
\(152\) 803529. 2.82093
\(153\) 241227. 0.833102
\(154\) −153189. −0.520507
\(155\) −270364. −0.903898
\(156\) 639621. 2.10432
\(157\) 361356. 1.17000 0.585000 0.811033i \(-0.301095\pi\)
0.585000 + 0.811033i \(0.301095\pi\)
\(158\) −394605. −1.25753
\(159\) 423361. 1.32806
\(160\) −86144.8 −0.266029
\(161\) −748407. −2.27548
\(162\) −967258. −2.89571
\(163\) −507005. −1.49466 −0.747331 0.664452i \(-0.768665\pi\)
−0.747331 + 0.664452i \(0.768665\pi\)
\(164\) −376611. −1.09341
\(165\) −83338.3 −0.238306
\(166\) −1.07476e6 −3.02720
\(167\) −584410. −1.62154 −0.810768 0.585368i \(-0.800950\pi\)
−0.810768 + 0.585368i \(0.800950\pi\)
\(168\) −1.69067e6 −4.62154
\(169\) −227990. −0.614043
\(170\) 178000. 0.472387
\(171\) −1.58589e6 −4.14746
\(172\) 535151. 1.37929
\(173\) 540584. 1.37324 0.686622 0.727015i \(-0.259093\pi\)
0.686622 + 0.727015i \(0.259093\pi\)
\(174\) 314082. 0.786447
\(175\) −312566. −0.771520
\(176\) 49884.5 0.121390
\(177\) −317020. −0.760594
\(178\) −287687. −0.680565
\(179\) −238123. −0.555481 −0.277741 0.960656i \(-0.589586\pi\)
−0.277741 + 0.960656i \(0.589586\pi\)
\(180\) −1.34798e6 −3.10101
\(181\) 498347. 1.13067 0.565334 0.824862i \(-0.308747\pi\)
0.565334 + 0.824862i \(0.308747\pi\)
\(182\) −805345. −1.80220
\(183\) 1.16009e6 2.56074
\(184\) 923830. 2.01163
\(185\) −244930. −0.526154
\(186\) −1.75646e6 −3.72269
\(187\) 32217.7 0.0673738
\(188\) −229609. −0.473800
\(189\) 1.83286e6 3.73229
\(190\) −1.17022e6 −2.35170
\(191\) −632113. −1.25375 −0.626876 0.779119i \(-0.715667\pi\)
−0.626876 + 0.779119i \(0.715667\pi\)
\(192\) −1.17964e6 −2.30940
\(193\) 194716. 0.376278 0.188139 0.982142i \(-0.439754\pi\)
0.188139 + 0.982142i \(0.439754\pi\)
\(194\) −1.12853e6 −2.15283
\(195\) −438125. −0.825110
\(196\) 1.94337e6 3.61340
\(197\) −271114. −0.497722 −0.248861 0.968539i \(-0.580056\pi\)
−0.248861 + 0.968539i \(0.580056\pi\)
\(198\) −373210. −0.676535
\(199\) 459151. 0.821907 0.410953 0.911656i \(-0.365196\pi\)
0.410953 + 0.911656i \(0.365196\pi\)
\(200\) 385830. 0.682058
\(201\) 1.06324e6 1.85626
\(202\) −1.41554e6 −2.44086
\(203\) −258527. −0.440318
\(204\) 755990. 1.27186
\(205\) 257969. 0.428729
\(206\) 26093.0 0.0428407
\(207\) −1.82332e6 −2.95758
\(208\) 262252. 0.420302
\(209\) −211807. −0.335409
\(210\) 2.46221e6 3.85280
\(211\) 544846. 0.842495 0.421247 0.906946i \(-0.361592\pi\)
0.421247 + 0.906946i \(0.361592\pi\)
\(212\) 914573. 1.39759
\(213\) −61315.3 −0.0926019
\(214\) 1.20860e6 1.80404
\(215\) −366565. −0.540823
\(216\) −2.26248e6 −3.29951
\(217\) 1.44578e6 2.08427
\(218\) −787747. −1.12265
\(219\) −852445. −1.20104
\(220\) −180033. −0.250781
\(221\) 169375. 0.233275
\(222\) −1.59123e6 −2.16696
\(223\) 781305. 1.05210 0.526052 0.850453i \(-0.323672\pi\)
0.526052 + 0.850453i \(0.323672\pi\)
\(224\) 460663. 0.613428
\(225\) −761495. −1.00279
\(226\) −2.18086e6 −2.84025
\(227\) −265970. −0.342585 −0.171293 0.985220i \(-0.554794\pi\)
−0.171293 + 0.985220i \(0.554794\pi\)
\(228\) −4.97006e6 −6.33176
\(229\) 1.46288e6 1.84341 0.921703 0.387897i \(-0.126798\pi\)
0.921703 + 0.387897i \(0.126798\pi\)
\(230\) −1.34542e6 −1.67702
\(231\) 445655. 0.549502
\(232\) 319125. 0.389261
\(233\) 229997. 0.277544 0.138772 0.990324i \(-0.455685\pi\)
0.138772 + 0.990324i \(0.455685\pi\)
\(234\) −1.96204e6 −2.34244
\(235\) 157277. 0.185778
\(236\) −684847. −0.800412
\(237\) 1.14798e6 1.32758
\(238\) −951864. −1.08926
\(239\) −700223. −0.792942 −0.396471 0.918047i \(-0.629765\pi\)
−0.396471 + 0.918047i \(0.629765\pi\)
\(240\) −801792. −0.898532
\(241\) 1.02043e6 1.13173 0.565864 0.824499i \(-0.308543\pi\)
0.565864 + 0.824499i \(0.308543\pi\)
\(242\) 1.49839e6 1.64470
\(243\) 801338. 0.870562
\(244\) 2.50611e6 2.69479
\(245\) −1.33116e6 −1.41683
\(246\) 1.67594e6 1.76571
\(247\) −1.11351e6 −1.16132
\(248\) −1.78467e6 −1.84259
\(249\) 3.12667e6 3.19583
\(250\) −1.80513e6 −1.82666
\(251\) −225106. −0.225529 −0.112765 0.993622i \(-0.535971\pi\)
−0.112765 + 0.993622i \(0.535971\pi\)
\(252\) 7.20839e6 7.15051
\(253\) −243518. −0.239183
\(254\) −585432. −0.569367
\(255\) −517835. −0.498701
\(256\) −1.90799e6 −1.81960
\(257\) 133185. 0.125783 0.0628916 0.998020i \(-0.479968\pi\)
0.0628916 + 0.998020i \(0.479968\pi\)
\(258\) −2.38145e6 −2.22737
\(259\) 1.30978e6 1.21324
\(260\) −946468. −0.868305
\(261\) −629841. −0.572308
\(262\) 2.64888e6 2.38402
\(263\) −1.64581e6 −1.46720 −0.733601 0.679580i \(-0.762162\pi\)
−0.733601 + 0.679580i \(0.762162\pi\)
\(264\) −550114. −0.485784
\(265\) −626461. −0.547998
\(266\) 6.25779e6 5.42271
\(267\) 836932. 0.718476
\(268\) 2.29688e6 1.95344
\(269\) 743690. 0.626630 0.313315 0.949649i \(-0.398560\pi\)
0.313315 + 0.949649i \(0.398560\pi\)
\(270\) 3.29495e6 2.75068
\(271\) 480954. 0.397814 0.198907 0.980018i \(-0.436261\pi\)
0.198907 + 0.980018i \(0.436261\pi\)
\(272\) 309965. 0.254033
\(273\) 2.34289e6 1.90259
\(274\) 545243. 0.438747
\(275\) −101703. −0.0810968
\(276\) −5.71416e6 −4.51523
\(277\) −1.69099e6 −1.32416 −0.662081 0.749432i \(-0.730327\pi\)
−0.662081 + 0.749432i \(0.730327\pi\)
\(278\) −1.29508e6 −1.00504
\(279\) 3.52231e6 2.70905
\(280\) 2.50174e6 1.90699
\(281\) 2.28935e6 1.72960 0.864800 0.502117i \(-0.167445\pi\)
0.864800 + 0.502117i \(0.167445\pi\)
\(282\) 1.02178e6 0.765125
\(283\) −36780.8 −0.0272995 −0.0136498 0.999907i \(-0.504345\pi\)
−0.0136498 + 0.999907i \(0.504345\pi\)
\(284\) −132457. −0.0974497
\(285\) 3.40437e6 2.48270
\(286\) −262045. −0.189435
\(287\) −1.37950e6 −0.988593
\(288\) 1.12230e6 0.797310
\(289\) −1.21967e6 −0.859007
\(290\) −464756. −0.324512
\(291\) 3.28311e6 2.27276
\(292\) −1.84151e6 −1.26391
\(293\) −2.08471e6 −1.41866 −0.709328 0.704878i \(-0.751002\pi\)
−0.709328 + 0.704878i \(0.751002\pi\)
\(294\) −8.64813e6 −5.83517
\(295\) 469104. 0.313844
\(296\) −1.61678e6 −1.07256
\(297\) 596380. 0.392312
\(298\) −1.66951e6 −1.08905
\(299\) −1.28022e6 −0.828146
\(300\) −2.38647e6 −1.53092
\(301\) 1.96022e6 1.24707
\(302\) −868809. −0.548159
\(303\) 4.11805e6 2.57683
\(304\) −2.03778e6 −1.26466
\(305\) −1.71662e6 −1.05664
\(306\) −2.31900e6 −1.41578
\(307\) −951017. −0.575894 −0.287947 0.957646i \(-0.592973\pi\)
−0.287947 + 0.957646i \(0.592973\pi\)
\(308\) 962734. 0.578269
\(309\) −75909.3 −0.0452271
\(310\) 2.59909e6 1.53609
\(311\) 286310. 0.167856 0.0839278 0.996472i \(-0.473254\pi\)
0.0839278 + 0.996472i \(0.473254\pi\)
\(312\) −2.89206e6 −1.68198
\(313\) −1.10994e6 −0.640380 −0.320190 0.947353i \(-0.603747\pi\)
−0.320190 + 0.947353i \(0.603747\pi\)
\(314\) −3.47383e6 −1.98831
\(315\) −4.93757e6 −2.80374
\(316\) 2.47993e6 1.39708
\(317\) 1.44376e6 0.806952 0.403476 0.914990i \(-0.367802\pi\)
0.403476 + 0.914990i \(0.367802\pi\)
\(318\) −4.06991e6 −2.25692
\(319\) −84120.0 −0.0462831
\(320\) 1.74556e6 0.952926
\(321\) −3.51602e6 −1.90453
\(322\) 7.19468e6 3.86698
\(323\) −1.31609e6 −0.701909
\(324\) 6.07884e6 3.21705
\(325\) −534674. −0.280789
\(326\) 4.87400e6 2.54005
\(327\) 2.29170e6 1.18519
\(328\) 1.70285e6 0.873960
\(329\) −841045. −0.428380
\(330\) 801158. 0.404980
\(331\) −3.18244e6 −1.59658 −0.798289 0.602274i \(-0.794261\pi\)
−0.798289 + 0.602274i \(0.794261\pi\)
\(332\) 6.75444e6 3.36313
\(333\) 3.19096e6 1.57693
\(334\) 5.61812e6 2.75566
\(335\) −1.57330e6 −0.765951
\(336\) 4.28762e6 2.07190
\(337\) 3.15071e6 1.51124 0.755620 0.655010i \(-0.227336\pi\)
0.755620 + 0.655010i \(0.227336\pi\)
\(338\) 2.19174e6 1.04351
\(339\) 6.34450e6 2.99846
\(340\) −1.11866e6 −0.524809
\(341\) 470431. 0.219084
\(342\) 1.52456e7 7.04824
\(343\) 3.39907e6 1.56000
\(344\) −2.41969e6 −1.10246
\(345\) 3.91406e6 1.77043
\(346\) −5.19680e6 −2.33371
\(347\) −3.28842e6 −1.46610 −0.733050 0.680175i \(-0.761904\pi\)
−0.733050 + 0.680175i \(0.761904\pi\)
\(348\) −1.97388e6 −0.873720
\(349\) −3.03326e6 −1.33305 −0.666524 0.745483i \(-0.732219\pi\)
−0.666524 + 0.745483i \(0.732219\pi\)
\(350\) 3.00480e6 1.31113
\(351\) 3.13528e6 1.35834
\(352\) 149891. 0.0644793
\(353\) 3.60028e6 1.53780 0.768900 0.639369i \(-0.220805\pi\)
0.768900 + 0.639369i \(0.220805\pi\)
\(354\) 3.04761e6 1.29256
\(355\) 90730.1 0.0382103
\(356\) 1.80800e6 0.756089
\(357\) 2.76914e6 1.14994
\(358\) 2.28916e6 0.943991
\(359\) −2.98440e6 −1.22214 −0.611070 0.791576i \(-0.709261\pi\)
−0.611070 + 0.791576i \(0.709261\pi\)
\(360\) 6.09491e6 2.47863
\(361\) 6.17622e6 2.49434
\(362\) −4.79076e6 −1.92147
\(363\) −4.35908e6 −1.73632
\(364\) 5.06128e6 2.00220
\(365\) 1.26139e6 0.495583
\(366\) −1.11523e7 −4.35174
\(367\) −3.22401e6 −1.24948 −0.624742 0.780831i \(-0.714796\pi\)
−0.624742 + 0.780831i \(0.714796\pi\)
\(368\) −2.34287e6 −0.901839
\(369\) −3.36083e6 −1.28494
\(370\) 2.35459e6 0.894152
\(371\) 3.35003e6 1.26361
\(372\) 1.10387e7 4.13580
\(373\) −566079. −0.210671 −0.105335 0.994437i \(-0.533592\pi\)
−0.105335 + 0.994437i \(0.533592\pi\)
\(374\) −309719. −0.114496
\(375\) 5.25144e6 1.92841
\(376\) 1.03818e6 0.378707
\(377\) −442235. −0.160251
\(378\) −1.76199e7 −6.34269
\(379\) 2.06578e6 0.738731 0.369366 0.929284i \(-0.379575\pi\)
0.369366 + 0.929284i \(0.379575\pi\)
\(380\) 7.35435e6 2.61267
\(381\) 1.70313e6 0.601083
\(382\) 6.07671e6 2.13064
\(383\) 1.26408e6 0.440330 0.220165 0.975463i \(-0.429340\pi\)
0.220165 + 0.975463i \(0.429340\pi\)
\(384\) 9.47738e6 3.27990
\(385\) −659450. −0.226741
\(386\) −1.87187e6 −0.639451
\(387\) 4.77563e6 1.62089
\(388\) 7.09239e6 2.39174
\(389\) 3.37044e6 1.12931 0.564655 0.825327i \(-0.309009\pi\)
0.564655 + 0.825327i \(0.309009\pi\)
\(390\) 4.21184e6 1.40220
\(391\) −1.51314e6 −0.500537
\(392\) −8.78699e6 −2.88818
\(393\) −7.70608e6 −2.51682
\(394\) 2.60631e6 0.845834
\(395\) −1.69869e6 −0.547801
\(396\) 2.34548e6 0.751612
\(397\) 3.62630e6 1.15475 0.577374 0.816479i \(-0.304077\pi\)
0.577374 + 0.816479i \(0.304077\pi\)
\(398\) −4.41396e6 −1.39676
\(399\) −1.82050e7 −5.72478
\(400\) −978481. −0.305775
\(401\) −3.12403e6 −0.970184 −0.485092 0.874463i \(-0.661214\pi\)
−0.485092 + 0.874463i \(0.661214\pi\)
\(402\) −1.02212e7 −3.15456
\(403\) 2.47315e6 0.758555
\(404\) 8.89610e6 2.71173
\(405\) −4.16385e6 −1.26142
\(406\) 2.48530e6 0.748281
\(407\) 426177. 0.127528
\(408\) −3.41822e6 −1.01660
\(409\) 1.08397e6 0.320412 0.160206 0.987084i \(-0.448784\pi\)
0.160206 + 0.987084i \(0.448784\pi\)
\(410\) −2.47994e6 −0.728587
\(411\) −1.58621e6 −0.463187
\(412\) −163984. −0.0475948
\(413\) −2.50855e6 −0.723682
\(414\) 1.75282e7 5.02615
\(415\) −4.62663e6 −1.31869
\(416\) 788008. 0.223253
\(417\) 3.76762e6 1.06103
\(418\) 2.03617e6 0.569998
\(419\) −3.15770e6 −0.878689 −0.439345 0.898319i \(-0.644789\pi\)
−0.439345 + 0.898319i \(0.644789\pi\)
\(420\) −1.54740e7 −4.28035
\(421\) −4.19127e6 −1.15250 −0.576249 0.817274i \(-0.695484\pi\)
−0.576249 + 0.817274i \(0.695484\pi\)
\(422\) −5.23778e6 −1.43175
\(423\) −2.04901e6 −0.556792
\(424\) −4.13525e6 −1.11709
\(425\) −631949. −0.169711
\(426\) 589443. 0.157369
\(427\) 9.17972e6 2.43646
\(428\) −7.59555e6 −2.00424
\(429\) 762335. 0.199987
\(430\) 3.52391e6 0.919080
\(431\) −93524.3 −0.0242511 −0.0121255 0.999926i \(-0.503860\pi\)
−0.0121255 + 0.999926i \(0.503860\pi\)
\(432\) 5.73773e6 1.47921
\(433\) −4.47008e6 −1.14576 −0.572882 0.819638i \(-0.694175\pi\)
−0.572882 + 0.819638i \(0.694175\pi\)
\(434\) −1.38988e7 −3.54203
\(435\) 1.35206e6 0.342588
\(436\) 4.95068e6 1.24724
\(437\) 9.94772e6 2.49184
\(438\) 8.19482e6 2.04105
\(439\) 5.13107e6 1.27071 0.635356 0.772220i \(-0.280854\pi\)
0.635356 + 0.772220i \(0.280854\pi\)
\(440\) 814022. 0.200449
\(441\) 1.73425e7 4.24634
\(442\) −1.62825e6 −0.396430
\(443\) 476162. 0.115278 0.0576388 0.998338i \(-0.481643\pi\)
0.0576388 + 0.998338i \(0.481643\pi\)
\(444\) 1.00003e7 2.40743
\(445\) −1.23843e6 −0.296465
\(446\) −7.51093e6 −1.78796
\(447\) 4.85691e6 1.14972
\(448\) −9.33444e6 −2.19732
\(449\) −1.81216e6 −0.424210 −0.212105 0.977247i \(-0.568032\pi\)
−0.212105 + 0.977247i \(0.568032\pi\)
\(450\) 7.32049e6 1.70416
\(451\) −448865. −0.103914
\(452\) 1.37058e7 3.15543
\(453\) 2.52752e6 0.578694
\(454\) 2.55686e6 0.582193
\(455\) −3.46685e6 −0.785067
\(456\) 2.24722e7 5.06096
\(457\) 8.38656e6 1.87842 0.939212 0.343338i \(-0.111558\pi\)
0.939212 + 0.343338i \(0.111558\pi\)
\(458\) −1.40632e7 −3.13270
\(459\) 3.70569e6 0.820990
\(460\) 8.45542e6 1.86312
\(461\) 6.04043e6 1.32378 0.661890 0.749601i \(-0.269755\pi\)
0.661890 + 0.749601i \(0.269755\pi\)
\(462\) −4.28423e6 −0.933829
\(463\) −6.55857e6 −1.42186 −0.710929 0.703264i \(-0.751725\pi\)
−0.710929 + 0.703264i \(0.751725\pi\)
\(464\) −809313. −0.174511
\(465\) −7.56123e6 −1.62166
\(466\) −2.21103e6 −0.471661
\(467\) −2.24534e6 −0.476419 −0.238210 0.971214i \(-0.576560\pi\)
−0.238210 + 0.971214i \(0.576560\pi\)
\(468\) 1.23306e7 2.60238
\(469\) 8.41331e6 1.76618
\(470\) −1.51195e6 −0.315714
\(471\) 1.01060e7 2.09907
\(472\) 3.09654e6 0.639768
\(473\) 637821. 0.131083
\(474\) −1.10359e7 −2.25611
\(475\) 4.15458e6 0.844877
\(476\) 5.98209e6 1.21014
\(477\) 8.16156e6 1.64239
\(478\) 6.73147e6 1.34753
\(479\) 4.21405e6 0.839192 0.419596 0.907711i \(-0.362172\pi\)
0.419596 + 0.907711i \(0.362172\pi\)
\(480\) −2.40920e6 −0.477276
\(481\) 2.24049e6 0.441551
\(482\) −9.80975e6 −1.92327
\(483\) −2.09306e7 −4.08238
\(484\) −9.41679e6 −1.82721
\(485\) −4.85812e6 −0.937807
\(486\) −7.70352e6 −1.47944
\(487\) 5.90930e6 1.12905 0.564525 0.825416i \(-0.309059\pi\)
0.564525 + 0.825416i \(0.309059\pi\)
\(488\) −1.13314e7 −2.15394
\(489\) −1.41793e7 −2.68154
\(490\) 1.27969e7 2.40777
\(491\) 3.40576e6 0.637544 0.318772 0.947831i \(-0.396730\pi\)
0.318772 + 0.947831i \(0.396730\pi\)
\(492\) −1.05326e7 −1.96166
\(493\) −522692. −0.0968565
\(494\) 1.07045e7 1.97356
\(495\) −1.60660e6 −0.294709
\(496\) 4.52599e6 0.826056
\(497\) −485183. −0.0881079
\(498\) −3.00577e7 −5.43103
\(499\) −2.77937e6 −0.499683 −0.249841 0.968287i \(-0.580378\pi\)
−0.249841 + 0.968287i \(0.580378\pi\)
\(500\) 1.13445e7 2.02937
\(501\) −1.63441e7 −2.90916
\(502\) 2.16402e6 0.383267
\(503\) −1.06879e7 −1.88354 −0.941768 0.336263i \(-0.890837\pi\)
−0.941768 + 0.336263i \(0.890837\pi\)
\(504\) −3.25928e7 −5.71539
\(505\) −6.09361e6 −1.06328
\(506\) 2.34102e6 0.406470
\(507\) −6.37616e6 −1.10164
\(508\) 3.67921e6 0.632550
\(509\) 3.22149e6 0.551140 0.275570 0.961281i \(-0.411133\pi\)
0.275570 + 0.961281i \(0.411133\pi\)
\(510\) 4.97811e6 0.847499
\(511\) −6.74533e6 −1.14275
\(512\) 7.49797e6 1.26406
\(513\) −2.43621e7 −4.08716
\(514\) −1.28035e6 −0.213757
\(515\) 112325. 0.0186621
\(516\) 1.49665e7 2.47455
\(517\) −273661. −0.0450284
\(518\) −1.25913e7 −2.06180
\(519\) 1.51184e7 2.46370
\(520\) 4.27947e6 0.694035
\(521\) 4.89753e6 0.790465 0.395233 0.918581i \(-0.370664\pi\)
0.395233 + 0.918581i \(0.370664\pi\)
\(522\) 6.05487e6 0.972587
\(523\) 22067.8 0.00352780 0.00176390 0.999998i \(-0.499439\pi\)
0.00176390 + 0.999998i \(0.499439\pi\)
\(524\) −1.66472e7 −2.64858
\(525\) −8.74150e6 −1.38416
\(526\) 1.58217e7 2.49338
\(527\) 2.92309e6 0.458476
\(528\) 1.39511e6 0.217783
\(529\) 5.00071e6 0.776948
\(530\) 6.02237e6 0.931274
\(531\) −6.11150e6 −0.940615
\(532\) −3.93277e7 −6.02448
\(533\) −2.35977e6 −0.359792
\(534\) −8.04569e6 −1.22099
\(535\) 5.20277e6 0.785868
\(536\) −1.03854e7 −1.56138
\(537\) −6.65957e6 −0.996575
\(538\) −7.14933e6 −1.06490
\(539\) 2.31622e6 0.343405
\(540\) −2.07075e7 −3.05592
\(541\) −4.31826e6 −0.634330 −0.317165 0.948370i \(-0.602731\pi\)
−0.317165 + 0.948370i \(0.602731\pi\)
\(542\) −4.62356e6 −0.676050
\(543\) 1.39372e7 2.02850
\(544\) 931372. 0.134935
\(545\) −3.39110e6 −0.489045
\(546\) −2.25230e7 −3.23329
\(547\) −8.24088e6 −1.17762 −0.588810 0.808272i \(-0.700403\pi\)
−0.588810 + 0.808272i \(0.700403\pi\)
\(548\) −3.42664e6 −0.487435
\(549\) 2.23643e7 3.16682
\(550\) 977707. 0.137817
\(551\) 3.43630e6 0.482184
\(552\) 2.58366e7 3.60901
\(553\) 9.08384e6 1.26316
\(554\) 1.62560e7 2.25030
\(555\) −6.84993e6 −0.943960
\(556\) 8.13906e6 1.11657
\(557\) 1.33173e6 0.181877 0.0909386 0.995856i \(-0.471013\pi\)
0.0909386 + 0.995856i \(0.471013\pi\)
\(558\) −3.38611e7 −4.60379
\(559\) 3.35315e6 0.453861
\(560\) −6.34452e6 −0.854927
\(561\) 901029. 0.120874
\(562\) −2.20082e7 −2.93930
\(563\) 6.35229e6 0.844616 0.422308 0.906452i \(-0.361220\pi\)
0.422308 + 0.906452i \(0.361220\pi\)
\(564\) −6.42145e6 −0.850033
\(565\) −9.38815e6 −1.23725
\(566\) 353585. 0.0463931
\(567\) 2.22664e7 2.90866
\(568\) 598908. 0.0778913
\(569\) −9.57321e6 −1.23959 −0.619794 0.784765i \(-0.712784\pi\)
−0.619794 + 0.784765i \(0.712784\pi\)
\(570\) −3.27273e7 −4.21913
\(571\) 2.81768e6 0.361661 0.180831 0.983514i \(-0.442121\pi\)
0.180831 + 0.983514i \(0.442121\pi\)
\(572\) 1.64685e6 0.210457
\(573\) −1.76782e7 −2.24933
\(574\) 1.32616e7 1.68002
\(575\) 4.77659e6 0.602488
\(576\) −2.27412e7 −2.85599
\(577\) −8.37249e6 −1.04692 −0.523462 0.852049i \(-0.675360\pi\)
−0.523462 + 0.852049i \(0.675360\pi\)
\(578\) 1.17251e7 1.45981
\(579\) 5.44560e6 0.675071
\(580\) 2.92081e6 0.360523
\(581\) 2.47411e7 3.04074
\(582\) −3.15616e7 −3.86235
\(583\) 1.09004e6 0.132822
\(584\) 8.32640e6 1.01024
\(585\) −8.44618e6 −1.02040
\(586\) 2.00410e7 2.41088
\(587\) 7.10074e6 0.850566 0.425283 0.905060i \(-0.360175\pi\)
0.425283 + 0.905060i \(0.360175\pi\)
\(588\) 5.43501e7 6.48271
\(589\) −1.92171e7 −2.28244
\(590\) −4.50964e6 −0.533350
\(591\) −7.58221e6 −0.892950
\(592\) 4.10022e6 0.480843
\(593\) 1.29659e7 1.51414 0.757071 0.653332i \(-0.226630\pi\)
0.757071 + 0.653332i \(0.226630\pi\)
\(594\) −5.73319e6 −0.666700
\(595\) −4.09759e6 −0.474500
\(596\) 1.04922e7 1.20991
\(597\) 1.28410e7 1.47456
\(598\) 1.23072e7 1.40736
\(599\) 7.64236e6 0.870283 0.435142 0.900362i \(-0.356698\pi\)
0.435142 + 0.900362i \(0.356698\pi\)
\(600\) 1.07905e7 1.22366
\(601\) 1.35462e7 1.52979 0.764897 0.644153i \(-0.222790\pi\)
0.764897 + 0.644153i \(0.222790\pi\)
\(602\) −1.88443e7 −2.11928
\(603\) 2.04971e7 2.29561
\(604\) 5.46012e6 0.608989
\(605\) 6.45027e6 0.716456
\(606\) −3.95882e7 −4.37909
\(607\) −1.40459e7 −1.54731 −0.773655 0.633607i \(-0.781574\pi\)
−0.773655 + 0.633607i \(0.781574\pi\)
\(608\) −6.12307e6 −0.671754
\(609\) −7.23019e6 −0.789963
\(610\) 1.65025e7 1.79566
\(611\) −1.43869e6 −0.155906
\(612\) 1.45740e7 1.57289
\(613\) 7.20030e6 0.773926 0.386963 0.922095i \(-0.373524\pi\)
0.386963 + 0.922095i \(0.373524\pi\)
\(614\) 9.14244e6 0.978681
\(615\) 7.21459e6 0.769172
\(616\) −4.35302e6 −0.462209
\(617\) −3.09437e6 −0.327235 −0.163618 0.986524i \(-0.552316\pi\)
−0.163618 + 0.986524i \(0.552316\pi\)
\(618\) 729741. 0.0768595
\(619\) 5.60446e6 0.587905 0.293952 0.955820i \(-0.405029\pi\)
0.293952 + 0.955820i \(0.405029\pi\)
\(620\) −1.63343e7 −1.70656
\(621\) −2.80095e7 −2.91459
\(622\) −2.75239e6 −0.285255
\(623\) 6.62258e6 0.683608
\(624\) 7.33438e6 0.754053
\(625\) −3.35694e6 −0.343750
\(626\) 1.06702e7 1.08827
\(627\) −5.92358e6 −0.601749
\(628\) 2.18316e7 2.20896
\(629\) 2.64811e6 0.266876
\(630\) 4.74665e7 4.76470
\(631\) −1.04528e7 −1.04511 −0.522554 0.852606i \(-0.675021\pi\)
−0.522554 + 0.852606i \(0.675021\pi\)
\(632\) −1.12131e7 −1.11669
\(633\) 1.52376e7 1.51150
\(634\) −1.38794e7 −1.37134
\(635\) −2.52017e6 −0.248025
\(636\) 2.55777e7 2.50738
\(637\) 1.21768e7 1.18901
\(638\) 808673. 0.0786541
\(639\) −1.18204e6 −0.114519
\(640\) −1.40240e7 −1.35338
\(641\) 8.54011e6 0.820953 0.410477 0.911871i \(-0.365362\pi\)
0.410477 + 0.911871i \(0.365362\pi\)
\(642\) 3.38006e7 3.23659
\(643\) 1.53192e7 1.46120 0.730598 0.682808i \(-0.239242\pi\)
0.730598 + 0.682808i \(0.239242\pi\)
\(644\) −4.52157e7 −4.29610
\(645\) −1.02517e7 −0.970277
\(646\) 1.26520e7 1.19283
\(647\) −1.15425e7 −1.08403 −0.542014 0.840370i \(-0.682338\pi\)
−0.542014 + 0.840370i \(0.682338\pi\)
\(648\) −2.74855e7 −2.57138
\(649\) −816237. −0.0760685
\(650\) 5.13999e6 0.477176
\(651\) 4.04340e7 3.73933
\(652\) −3.06312e7 −2.82192
\(653\) −1.48966e7 −1.36711 −0.683554 0.729900i \(-0.739567\pi\)
−0.683554 + 0.729900i \(0.739567\pi\)
\(654\) −2.20308e7 −2.01412
\(655\) 1.14029e7 1.03852
\(656\) −4.31850e6 −0.391808
\(657\) −1.64334e7 −1.48530
\(658\) 8.08523e6 0.727994
\(659\) 1.40051e7 1.25624 0.628119 0.778117i \(-0.283825\pi\)
0.628119 + 0.778117i \(0.283825\pi\)
\(660\) −5.03496e6 −0.449921
\(661\) −1.10008e7 −0.979313 −0.489657 0.871915i \(-0.662878\pi\)
−0.489657 + 0.871915i \(0.662878\pi\)
\(662\) 3.05938e7 2.71324
\(663\) 4.73688e6 0.418513
\(664\) −3.05403e7 −2.68815
\(665\) 2.69385e7 2.36222
\(666\) −3.06758e7 −2.67984
\(667\) 3.95077e6 0.343849
\(668\) −3.53077e7 −3.06146
\(669\) 2.18506e7 1.88755
\(670\) 1.51247e7 1.30166
\(671\) 2.98692e6 0.256104
\(672\) 1.28833e7 1.10054
\(673\) −5.45968e6 −0.464654 −0.232327 0.972638i \(-0.574634\pi\)
−0.232327 + 0.972638i \(0.574634\pi\)
\(674\) −3.02888e7 −2.56822
\(675\) −1.16980e7 −0.988213
\(676\) −1.37742e7 −1.15931
\(677\) −7.02343e6 −0.588949 −0.294474 0.955659i \(-0.595145\pi\)
−0.294474 + 0.955659i \(0.595145\pi\)
\(678\) −6.09917e7 −5.09561
\(679\) 2.59790e7 2.16246
\(680\) 5.05804e6 0.419479
\(681\) −7.43835e6 −0.614623
\(682\) −4.52241e6 −0.372313
\(683\) 2.70590e6 0.221952 0.110976 0.993823i \(-0.464602\pi\)
0.110976 + 0.993823i \(0.464602\pi\)
\(684\) −9.58128e7 −7.83039
\(685\) 2.34716e6 0.191125
\(686\) −3.26764e7 −2.65108
\(687\) 4.09122e7 3.30721
\(688\) 6.13644e6 0.494248
\(689\) 5.73053e6 0.459883
\(690\) −3.76271e7 −3.00869
\(691\) 2.07593e7 1.65393 0.826966 0.562252i \(-0.190065\pi\)
0.826966 + 0.562252i \(0.190065\pi\)
\(692\) 3.26599e7 2.59268
\(693\) 8.59134e6 0.679560
\(694\) 3.16126e7 2.49151
\(695\) −5.57506e6 −0.437812
\(696\) 8.92492e6 0.698363
\(697\) −2.78909e6 −0.217460
\(698\) 2.91597e7 2.26540
\(699\) 6.43228e6 0.497934
\(700\) −1.88840e7 −1.45663
\(701\) 9.20836e6 0.707762 0.353881 0.935290i \(-0.384862\pi\)
0.353881 + 0.935290i \(0.384862\pi\)
\(702\) −3.01405e7 −2.30838
\(703\) −1.74093e7 −1.32860
\(704\) −3.03726e6 −0.230967
\(705\) 4.39854e6 0.333300
\(706\) −3.46107e7 −2.61335
\(707\) 3.25859e7 2.45177
\(708\) −1.91530e7 −1.43600
\(709\) 6.13331e6 0.458226 0.229113 0.973400i \(-0.426418\pi\)
0.229113 + 0.973400i \(0.426418\pi\)
\(710\) −872218. −0.0649350
\(711\) 2.21307e7 1.64180
\(712\) −8.17488e6 −0.604340
\(713\) −2.20942e7 −1.62763
\(714\) −2.66207e7 −1.95422
\(715\) −1.12805e6 −0.0825208
\(716\) −1.43864e7 −1.04875
\(717\) −1.95830e7 −1.42260
\(718\) 2.86900e7 2.07692
\(719\) −1.21189e7 −0.874259 −0.437129 0.899399i \(-0.644005\pi\)
−0.437129 + 0.899399i \(0.644005\pi\)
\(720\) −1.54570e7 −1.11120
\(721\) −600665. −0.0430323
\(722\) −5.93740e7 −4.23890
\(723\) 2.85383e7 2.03040
\(724\) 3.01081e7 2.13470
\(725\) 1.65001e6 0.116585
\(726\) 4.19053e7 2.95071
\(727\) −2.10279e7 −1.47557 −0.737784 0.675037i \(-0.764128\pi\)
−0.737784 + 0.675037i \(0.764128\pi\)
\(728\) −2.28846e7 −1.60035
\(729\) −2.03890e6 −0.142094
\(730\) −1.21261e7 −0.842200
\(731\) 3.96319e6 0.274317
\(732\) 7.00880e7 4.83466
\(733\) −1.15552e7 −0.794357 −0.397179 0.917741i \(-0.630011\pi\)
−0.397179 + 0.917741i \(0.630011\pi\)
\(734\) 3.09934e7 2.12339
\(735\) −3.72285e7 −2.54189
\(736\) −7.03979e6 −0.479033
\(737\) 2.73754e6 0.185649
\(738\) 3.23088e7 2.18363
\(739\) −1.78123e7 −1.19980 −0.599900 0.800075i \(-0.704793\pi\)
−0.599900 + 0.800075i \(0.704793\pi\)
\(740\) −1.47977e7 −0.993378
\(741\) −3.11414e7 −2.08349
\(742\) −3.22049e7 −2.14739
\(743\) −1.66941e7 −1.10941 −0.554704 0.832048i \(-0.687169\pi\)
−0.554704 + 0.832048i \(0.687169\pi\)
\(744\) −4.99115e7 −3.30574
\(745\) −7.18692e6 −0.474408
\(746\) 5.44190e6 0.358017
\(747\) 6.02759e7 3.95223
\(748\) 1.94646e6 0.127202
\(749\) −2.78220e7 −1.81211
\(750\) −5.04838e7 −3.27717
\(751\) 1.51681e7 0.981368 0.490684 0.871338i \(-0.336747\pi\)
0.490684 + 0.871338i \(0.336747\pi\)
\(752\) −2.63287e6 −0.169779
\(753\) −6.29551e6 −0.404616
\(754\) 4.25135e6 0.272332
\(755\) −3.74005e6 −0.238787
\(756\) 1.10734e8 7.04655
\(757\) −5.80254e6 −0.368026 −0.184013 0.982924i \(-0.558909\pi\)
−0.184013 + 0.982924i \(0.558909\pi\)
\(758\) −1.98590e7 −1.25541
\(759\) −6.81044e6 −0.429112
\(760\) −3.32528e7 −2.08831
\(761\) −1.22810e7 −0.768729 −0.384365 0.923181i \(-0.625579\pi\)
−0.384365 + 0.923181i \(0.625579\pi\)
\(762\) −1.63727e7 −1.02149
\(763\) 1.81340e7 1.12767
\(764\) −3.81897e7 −2.36708
\(765\) −9.98282e6 −0.616736
\(766\) −1.21520e7 −0.748302
\(767\) −4.29111e6 −0.263379
\(768\) −5.33604e7 −3.26450
\(769\) −1.46288e6 −0.0892055 −0.0446027 0.999005i \(-0.514202\pi\)
−0.0446027 + 0.999005i \(0.514202\pi\)
\(770\) 6.33950e6 0.385326
\(771\) 3.72477e6 0.225665
\(772\) 1.17640e7 0.710412
\(773\) 5.49947e6 0.331034 0.165517 0.986207i \(-0.447071\pi\)
0.165517 + 0.986207i \(0.447071\pi\)
\(774\) −4.59097e7 −2.75456
\(775\) −9.22748e6 −0.551860
\(776\) −3.20683e7 −1.91171
\(777\) 3.66303e7 2.17665
\(778\) −3.24012e7 −1.91916
\(779\) 1.83361e7 1.08259
\(780\) −2.64697e7 −1.55780
\(781\) −157870. −0.00926129
\(782\) 1.45463e7 0.850617
\(783\) −9.67551e6 −0.563988
\(784\) 2.22842e7 1.29481
\(785\) −1.49541e7 −0.866139
\(786\) 7.40810e7 4.27711
\(787\) −1.38829e7 −0.798991 −0.399496 0.916735i \(-0.630815\pi\)
−0.399496 + 0.916735i \(0.630815\pi\)
\(788\) −1.63796e7 −0.939697
\(789\) −4.60281e7 −2.63227
\(790\) 1.63301e7 0.930938
\(791\) 5.02036e7 2.85294
\(792\) −1.06051e7 −0.600762
\(793\) 1.57028e7 0.886735
\(794\) −3.48608e7 −1.96239
\(795\) −1.75201e7 −0.983150
\(796\) 2.77400e7 1.55176
\(797\) 1.66216e7 0.926888 0.463444 0.886126i \(-0.346613\pi\)
0.463444 + 0.886126i \(0.346613\pi\)
\(798\) 1.75011e8 9.72875
\(799\) −1.70043e6 −0.0942306
\(800\) −2.94011e6 −0.162420
\(801\) 1.61344e7 0.888528
\(802\) 3.00323e7 1.64874
\(803\) −2.19481e6 −0.120118
\(804\) 6.42364e7 3.50462
\(805\) 3.09717e7 1.68451
\(806\) −2.37752e7 −1.28910
\(807\) 2.07987e7 1.12422
\(808\) −4.02238e7 −2.16748
\(809\) −2.28866e7 −1.22945 −0.614724 0.788742i \(-0.710733\pi\)
−0.614724 + 0.788742i \(0.710733\pi\)
\(810\) 4.00285e7 2.14366
\(811\) −2.84294e7 −1.51780 −0.758901 0.651206i \(-0.774263\pi\)
−0.758901 + 0.651206i \(0.774263\pi\)
\(812\) −1.56192e7 −0.831319
\(813\) 1.34508e7 0.713708
\(814\) −4.09698e6 −0.216722
\(815\) 2.09816e7 1.10648
\(816\) 8.66874e6 0.455754
\(817\) −2.60550e7 −1.36564
\(818\) −1.04206e7 −0.544512
\(819\) 4.51663e7 2.35291
\(820\) 1.55854e7 0.809440
\(821\) −5.45476e6 −0.282434 −0.141217 0.989979i \(-0.545102\pi\)
−0.141217 + 0.989979i \(0.545102\pi\)
\(822\) 1.52487e7 0.787144
\(823\) −8.37649e6 −0.431084 −0.215542 0.976495i \(-0.569152\pi\)
−0.215542 + 0.976495i \(0.569152\pi\)
\(824\) 741458. 0.0380424
\(825\) −2.84432e6 −0.145494
\(826\) 2.41155e7 1.22983
\(827\) −2.86055e7 −1.45441 −0.727204 0.686422i \(-0.759181\pi\)
−0.727204 + 0.686422i \(0.759181\pi\)
\(828\) −1.10158e8 −5.58391
\(829\) 3.10731e7 1.57036 0.785179 0.619269i \(-0.212571\pi\)
0.785179 + 0.619269i \(0.212571\pi\)
\(830\) 4.44773e7 2.24100
\(831\) −4.72916e7 −2.37565
\(832\) −1.59674e7 −0.799700
\(833\) 1.43921e7 0.718643
\(834\) −3.62193e7 −1.80312
\(835\) 2.41849e7 1.20041
\(836\) −1.27965e7 −0.633252
\(837\) 5.41092e7 2.66967
\(838\) 3.03559e7 1.49325
\(839\) 2.16591e7 1.06227 0.531135 0.847287i \(-0.321766\pi\)
0.531135 + 0.847287i \(0.321766\pi\)
\(840\) 6.99659e7 3.42128
\(841\) −1.91464e7 −0.933463
\(842\) 4.02920e7 1.95857
\(843\) 6.40258e7 3.10303
\(844\) 3.29173e7 1.59063
\(845\) 9.43500e6 0.454570
\(846\) 1.96978e7 0.946219
\(847\) −3.44931e7 −1.65205
\(848\) 1.04872e7 0.500805
\(849\) −1.02864e6 −0.0489774
\(850\) 6.07513e6 0.288408
\(851\) −2.00158e7 −0.947434
\(852\) −3.70442e6 −0.174832
\(853\) 1.69604e7 0.798111 0.399055 0.916927i \(-0.369338\pi\)
0.399055 + 0.916927i \(0.369338\pi\)
\(854\) −8.82476e7 −4.14055
\(855\) 6.56295e7 3.07032
\(856\) 3.43434e7 1.60198
\(857\) −2.00796e7 −0.933908 −0.466954 0.884282i \(-0.654649\pi\)
−0.466954 + 0.884282i \(0.654649\pi\)
\(858\) −7.32857e6 −0.339861
\(859\) 8.66953e6 0.400878 0.200439 0.979706i \(-0.435763\pi\)
0.200439 + 0.979706i \(0.435763\pi\)
\(860\) −2.21464e7 −1.02107
\(861\) −3.85803e7 −1.77361
\(862\) 899079. 0.0412126
\(863\) 7.31327e6 0.334260 0.167130 0.985935i \(-0.446550\pi\)
0.167130 + 0.985935i \(0.446550\pi\)
\(864\) 1.72406e7 0.785719
\(865\) −2.23712e7 −1.01660
\(866\) 4.29723e7 1.94713
\(867\) −3.41103e7 −1.54112
\(868\) 8.73483e7 3.93509
\(869\) 2.95572e6 0.132774
\(870\) −1.29978e7 −0.582198
\(871\) 1.43918e7 0.642789
\(872\) −2.23846e7 −0.996913
\(873\) 6.32918e7 2.81068
\(874\) −9.56306e7 −4.23466
\(875\) 4.15543e7 1.83483
\(876\) −5.15012e7 −2.26755
\(877\) 9.10111e6 0.399572 0.199786 0.979840i \(-0.435975\pi\)
0.199786 + 0.979840i \(0.435975\pi\)
\(878\) −4.93266e7 −2.15946
\(879\) −5.83029e7 −2.54518
\(880\) −2.06439e6 −0.0898640
\(881\) −1.51265e7 −0.656598 −0.328299 0.944574i \(-0.606475\pi\)
−0.328299 + 0.944574i \(0.606475\pi\)
\(882\) −1.66719e8 −7.21627
\(883\) −3.50421e7 −1.51248 −0.756238 0.654296i \(-0.772965\pi\)
−0.756238 + 0.654296i \(0.772965\pi\)
\(884\) 1.02329e7 0.440422
\(885\) 1.31194e7 0.563060
\(886\) −4.57750e6 −0.195904
\(887\) 1.75635e7 0.749554 0.374777 0.927115i \(-0.377719\pi\)
0.374777 + 0.927115i \(0.377719\pi\)
\(888\) −4.52163e7 −1.92425
\(889\) 1.34767e7 0.571913
\(890\) 1.19055e7 0.503815
\(891\) 7.24508e6 0.305738
\(892\) 4.72033e7 1.98637
\(893\) 1.11790e7 0.469111
\(894\) −4.66910e7 −1.95384
\(895\) 9.85437e6 0.411217
\(896\) 7.49938e7 3.12072
\(897\) −3.58038e7 −1.48576
\(898\) 1.74209e7 0.720907
\(899\) −7.63216e6 −0.314955
\(900\) −4.60064e7 −1.89327
\(901\) 6.77311e6 0.277956
\(902\) 4.31508e6 0.176593
\(903\) 5.48213e7 2.23733
\(904\) −6.19710e7 −2.52213
\(905\) −2.06233e7 −0.837021
\(906\) −2.42979e7 −0.983439
\(907\) 464101. 0.0187324 0.00936622 0.999956i \(-0.497019\pi\)
0.00936622 + 0.999956i \(0.497019\pi\)
\(908\) −1.60688e7 −0.646800
\(909\) 7.93879e7 3.18672
\(910\) 3.33280e7 1.33415
\(911\) −3.31603e7 −1.32380 −0.661901 0.749591i \(-0.730250\pi\)
−0.661901 + 0.749591i \(0.730250\pi\)
\(912\) −5.69904e7 −2.26890
\(913\) 8.05030e6 0.319621
\(914\) −8.06227e7 −3.19221
\(915\) −4.80086e7 −1.89569
\(916\) 8.83814e7 3.48035
\(917\) −6.09776e7 −2.39468
\(918\) −3.56240e7 −1.39520
\(919\) 1.03117e7 0.402754 0.201377 0.979514i \(-0.435458\pi\)
0.201377 + 0.979514i \(0.435458\pi\)
\(920\) −3.82313e7 −1.48919
\(921\) −2.65970e7 −1.03320
\(922\) −5.80686e7 −2.24965
\(923\) −829952. −0.0320663
\(924\) 2.69247e7 1.03746
\(925\) −8.35944e6 −0.321235
\(926\) 6.30496e7 2.41632
\(927\) −1.46338e6 −0.0559317
\(928\) −2.43180e6 −0.0926953
\(929\) 2.64309e7 1.00478 0.502392 0.864640i \(-0.332453\pi\)
0.502392 + 0.864640i \(0.332453\pi\)
\(930\) 7.26885e7 2.75587
\(931\) −9.46174e7 −3.57764
\(932\) 1.38955e7 0.524002
\(933\) 8.00719e6 0.301145
\(934\) 2.15851e7 0.809632
\(935\) −1.33328e6 −0.0498761
\(936\) −5.57531e7 −2.08008
\(937\) −8.28032e6 −0.308105 −0.154052 0.988063i \(-0.549232\pi\)
−0.154052 + 0.988063i \(0.549232\pi\)
\(938\) −8.08799e7 −3.00147
\(939\) −3.10415e7 −1.14889
\(940\) 9.50203e6 0.350749
\(941\) 7.82029e6 0.287905 0.143952 0.989585i \(-0.454019\pi\)
0.143952 + 0.989585i \(0.454019\pi\)
\(942\) −9.71521e7 −3.56718
\(943\) 2.10813e7 0.772003
\(944\) −7.85297e6 −0.286816
\(945\) −7.58501e7 −2.76297
\(946\) −6.13158e6 −0.222764
\(947\) −3.36374e7 −1.21884 −0.609421 0.792847i \(-0.708598\pi\)
−0.609421 + 0.792847i \(0.708598\pi\)
\(948\) 6.93560e7 2.50647
\(949\) −1.15385e7 −0.415896
\(950\) −3.99393e7 −1.43579
\(951\) 4.03775e7 1.44773
\(952\) −2.70481e7 −0.967263
\(953\) 4.71590e7 1.68203 0.841013 0.541015i \(-0.181960\pi\)
0.841013 + 0.541015i \(0.181960\pi\)
\(954\) −7.84597e7 −2.79110
\(955\) 2.61590e7 0.928139
\(956\) −4.23046e7 −1.49707
\(957\) −2.35257e6 −0.0830354
\(958\) −4.05110e7 −1.42613
\(959\) −1.25516e7 −0.440708
\(960\) 4.88178e7 1.70962
\(961\) 1.40528e7 0.490856
\(962\) −2.15386e7 −0.750377
\(963\) −6.77819e7 −2.35531
\(964\) 6.16504e7 2.13670
\(965\) −8.05802e6 −0.278555
\(966\) 2.01213e8 6.93765
\(967\) 2.95205e7 1.01521 0.507607 0.861589i \(-0.330530\pi\)
0.507607 + 0.861589i \(0.330530\pi\)
\(968\) 4.25781e7 1.46049
\(969\) −3.68070e7 −1.25928
\(970\) 4.67026e7 1.59372
\(971\) 4.31812e6 0.146976 0.0734880 0.997296i \(-0.476587\pi\)
0.0734880 + 0.997296i \(0.476587\pi\)
\(972\) 4.84136e7 1.64362
\(973\) 2.98129e7 1.00954
\(974\) −5.68079e7 −1.91872
\(975\) −1.49532e7 −0.503757
\(976\) 2.87369e7 0.965641
\(977\) −1.50177e7 −0.503347 −0.251673 0.967812i \(-0.580981\pi\)
−0.251673 + 0.967812i \(0.580981\pi\)
\(978\) 1.36310e8 4.55703
\(979\) 2.15487e6 0.0718561
\(980\) −8.04235e7 −2.67496
\(981\) 4.41794e7 1.46571
\(982\) −3.27407e7 −1.08345
\(983\) 966289. 0.0318950
\(984\) 4.76234e7 1.56795
\(985\) 1.12196e7 0.368458
\(986\) 5.02481e6 0.164599
\(987\) −2.35214e7 −0.768546
\(988\) −6.72737e7 −2.19257
\(989\) −2.99559e7 −0.973847
\(990\) 1.54447e7 0.500832
\(991\) 2.78637e7 0.901268 0.450634 0.892709i \(-0.351198\pi\)
0.450634 + 0.892709i \(0.351198\pi\)
\(992\) 1.35996e7 0.438779
\(993\) −8.90029e7 −2.86438
\(994\) 4.66422e6 0.149732
\(995\) −1.90012e7 −0.608449
\(996\) 1.88901e8 6.03372
\(997\) 1.09791e7 0.349808 0.174904 0.984586i \(-0.444039\pi\)
0.174904 + 0.984586i \(0.444039\pi\)
\(998\) 2.67189e7 0.849166
\(999\) 4.90190e7 1.55400
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 983.6.a.b.1.20 218
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
983.6.a.b.1.20 218 1.1 even 1 trivial