Properties

Label 99.6.f.b.91.5
Level $99$
Weight $6$
Character 99.91
Analytic conductor $15.878$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [99,6,Mod(37,99)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(99, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("99.37");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 99.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.8779981615\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{19} + 78 x^{18} + 79 x^{17} + 10573 x^{16} - 33409 x^{15} + 1262953 x^{14} + \cdots + 25599187870096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4}\cdot 11^{2} \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 91.5
Root \(-8.59311 - 6.24326i\) of defining polynomial
Character \(\chi\) \(=\) 99.91
Dual form 99.6.f.b.37.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(7.78409 - 5.65548i) q^{2} +(18.7192 - 57.6117i) q^{4} +(-48.1408 - 34.9763i) q^{5} +(9.43666 - 29.0431i) q^{7} +(-84.9654 - 261.497i) q^{8} -572.540 q^{10} +(70.0591 - 395.149i) q^{11} +(-460.773 + 334.771i) q^{13} +(-90.7964 - 279.443i) q^{14} +(-572.028 - 415.603i) q^{16} +(-1619.20 - 1176.42i) q^{17} +(497.601 + 1531.46i) q^{19} +(-2916.20 + 2118.74i) q^{20} +(-1689.41 - 3472.09i) q^{22} +1214.78 q^{23} +(128.514 + 395.526i) q^{25} +(-1693.41 + 5211.78i) q^{26} +(-1496.57 - 1087.32i) q^{28} +(2348.47 - 7227.84i) q^{29} +(5873.48 - 4267.33i) q^{31} +1995.37 q^{32} -19257.3 q^{34} +(-1470.11 + 1068.10i) q^{35} +(-406.300 + 1250.46i) q^{37} +(12534.5 + 9106.84i) q^{38} +(-5055.89 + 15560.4i) q^{40} +(-1804.73 - 5554.40i) q^{41} +6357.22 q^{43} +(-21453.7 - 11433.1i) q^{44} +(9455.97 - 6870.16i) q^{46} +(9346.16 + 28764.5i) q^{47} +(12842.7 + 9330.77i) q^{49} +(3237.26 + 2352.01i) q^{50} +(10661.4 + 32812.6i) q^{52} +(5785.79 - 4203.62i) q^{53} +(-17193.6 + 16572.4i) q^{55} -8396.45 q^{56} +(-22596.2 - 69543.9i) q^{58} +(6852.76 - 21090.6i) q^{59} +(-20223.1 - 14693.0i) q^{61} +(21585.9 - 66434.7i) q^{62} +(33837.0 - 24584.1i) q^{64} +33891.1 q^{65} +15543.8 q^{67} +(-98085.7 + 71263.5i) q^{68} +(-5402.87 + 16628.3i) q^{70} +(-52283.6 - 37986.3i) q^{71} +(13634.4 - 41962.5i) q^{73} +(3909.28 + 12031.5i) q^{74} +97544.6 q^{76} +(-10815.2 - 5763.62i) q^{77} +(14114.3 - 10254.6i) q^{79} +(13001.6 + 40014.9i) q^{80} +(-45461.0 - 33029.3i) q^{82} +(96187.9 + 69884.6i) q^{83} +(36802.9 + 113268. i) q^{85} +(49485.2 - 35953.1i) q^{86} +(-109283. + 15253.8i) q^{88} +6612.00 q^{89} +(5374.62 + 16541.4i) q^{91} +(22739.7 - 69985.6i) q^{92} +(235428. + 171049. i) q^{94} +(29609.9 - 91129.9i) q^{95} +(-103201. + 74979.8i) q^{97} +152739. q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{2} + 8 q^{4} + 11 q^{5} - 139 q^{7} + 76 q^{8} - 424 q^{10} - 2289 q^{11} - 847 q^{13} - 2022 q^{14} - 7148 q^{16} - 2482 q^{17} + 2958 q^{19} - 8037 q^{20} + 7441 q^{22} - 8140 q^{23} - 13120 q^{25}+ \cdots + 2296174 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 7.78409 5.65548i 1.37605 0.999756i 0.378809 0.925475i \(-0.376334\pi\)
0.997237 0.0742813i \(-0.0236663\pi\)
\(3\) 0 0
\(4\) 18.7192 57.6117i 0.584974 1.80037i
\(5\) −48.1408 34.9763i −0.861169 0.625676i 0.0670339 0.997751i \(-0.478646\pi\)
−0.928203 + 0.372075i \(0.878646\pi\)
\(6\) 0 0
\(7\) 9.43666 29.0431i 0.0727903 0.224025i −0.908042 0.418879i \(-0.862423\pi\)
0.980832 + 0.194854i \(0.0624232\pi\)
\(8\) −84.9654 261.497i −0.469372 1.44458i
\(9\) 0 0
\(10\) −572.540 −1.81053
\(11\) 70.0591 395.149i 0.174575 0.984644i
\(12\) 0 0
\(13\) −460.773 + 334.771i −0.756186 + 0.549401i −0.897738 0.440529i \(-0.854791\pi\)
0.141552 + 0.989931i \(0.454791\pi\)
\(14\) −90.7964 279.443i −0.123808 0.381042i
\(15\) 0 0
\(16\) −572.028 415.603i −0.558621 0.405862i
\(17\) −1619.20 1176.42i −1.35887 0.987280i −0.998516 0.0544664i \(-0.982654\pi\)
−0.360359 0.932814i \(-0.617346\pi\)
\(18\) 0 0
\(19\) 497.601 + 1531.46i 0.316226 + 0.973243i 0.975247 + 0.221118i \(0.0709707\pi\)
−0.659021 + 0.752124i \(0.729029\pi\)
\(20\) −2916.20 + 2118.74i −1.63021 + 1.18441i
\(21\) 0 0
\(22\) −1689.41 3472.09i −0.744180 1.52945i
\(23\) 1214.78 0.478827 0.239413 0.970918i \(-0.423045\pi\)
0.239413 + 0.970918i \(0.423045\pi\)
\(24\) 0 0
\(25\) 128.514 + 395.526i 0.0411246 + 0.126568i
\(26\) −1693.41 + 5211.78i −0.491280 + 1.51200i
\(27\) 0 0
\(28\) −1496.57 1087.32i −0.360747 0.262098i
\(29\) 2348.47 7227.84i 0.518549 1.59593i −0.258182 0.966096i \(-0.583123\pi\)
0.776731 0.629833i \(-0.216877\pi\)
\(30\) 0 0
\(31\) 5873.48 4267.33i 1.09772 0.797540i 0.117034 0.993128i \(-0.462662\pi\)
0.980686 + 0.195588i \(0.0626615\pi\)
\(32\) 1995.37 0.344468
\(33\) 0 0
\(34\) −19257.3 −2.85691
\(35\) −1470.11 + 1068.10i −0.202852 + 0.147381i
\(36\) 0 0
\(37\) −406.300 + 1250.46i −0.0487913 + 0.150164i −0.972484 0.232970i \(-0.925155\pi\)
0.923693 + 0.383135i \(0.125155\pi\)
\(38\) 12534.5 + 9106.84i 1.40815 + 1.02308i
\(39\) 0 0
\(40\) −5055.89 + 15560.4i −0.499629 + 1.53770i
\(41\) −1804.73 5554.40i −0.167669 0.516033i 0.831554 0.555444i \(-0.187452\pi\)
−0.999223 + 0.0394114i \(0.987452\pi\)
\(42\) 0 0
\(43\) 6357.22 0.524320 0.262160 0.965024i \(-0.415565\pi\)
0.262160 + 0.965024i \(0.415565\pi\)
\(44\) −21453.7 11433.1i −1.67060 0.890291i
\(45\) 0 0
\(46\) 9455.97 6870.16i 0.658888 0.478710i
\(47\) 9346.16 + 28764.5i 0.617147 + 1.89938i 0.359516 + 0.933139i \(0.382942\pi\)
0.257631 + 0.966243i \(0.417058\pi\)
\(48\) 0 0
\(49\) 12842.7 + 9330.77i 0.764128 + 0.555172i
\(50\) 3237.26 + 2352.01i 0.183127 + 0.133050i
\(51\) 0 0
\(52\) 10661.4 + 32812.6i 0.546774 + 1.68280i
\(53\) 5785.79 4203.62i 0.282926 0.205558i −0.437267 0.899332i \(-0.644053\pi\)
0.720193 + 0.693774i \(0.244053\pi\)
\(54\) 0 0
\(55\) −17193.6 + 16572.4i −0.766407 + 0.738717i
\(56\) −8396.45 −0.357788
\(57\) 0 0
\(58\) −22596.2 69543.9i −0.881993 2.71450i
\(59\) 6852.76 21090.6i 0.256292 0.788787i −0.737280 0.675587i \(-0.763890\pi\)
0.993572 0.113199i \(-0.0361099\pi\)
\(60\) 0 0
\(61\) −20223.1 14693.0i −0.695863 0.505574i 0.182719 0.983165i \(-0.441510\pi\)
−0.878582 + 0.477591i \(0.841510\pi\)
\(62\) 21585.9 66434.7i 0.713168 2.19490i
\(63\) 0 0
\(64\) 33837.0 24584.1i 1.03262 0.750246i
\(65\) 33891.1 0.994951
\(66\) 0 0
\(67\) 15543.8 0.423028 0.211514 0.977375i \(-0.432161\pi\)
0.211514 + 0.977375i \(0.432161\pi\)
\(68\) −98085.7 + 71263.5i −2.57237 + 1.86894i
\(69\) 0 0
\(70\) −5402.87 + 16628.3i −0.131789 + 0.405605i
\(71\) −52283.6 37986.3i −1.23089 0.894295i −0.233935 0.972252i \(-0.575160\pi\)
−0.996957 + 0.0779570i \(0.975160\pi\)
\(72\) 0 0
\(73\) 13634.4 41962.5i 0.299454 0.921625i −0.682235 0.731133i \(-0.738992\pi\)
0.981689 0.190492i \(-0.0610082\pi\)
\(74\) 3909.28 + 12031.5i 0.0829885 + 0.255412i
\(75\) 0 0
\(76\) 97544.6 1.93718
\(77\) −10815.2 5763.62i −0.207878 0.110782i
\(78\) 0 0
\(79\) 14114.3 10254.6i 0.254444 0.184864i −0.453250 0.891383i \(-0.649736\pi\)
0.707694 + 0.706519i \(0.249736\pi\)
\(80\) 13001.6 + 40014.9i 0.227129 + 0.699031i
\(81\) 0 0
\(82\) −45461.0 33029.3i −0.746628 0.542457i
\(83\) 96187.9 + 69884.6i 1.53259 + 1.11349i 0.954779 + 0.297316i \(0.0960916\pi\)
0.577808 + 0.816173i \(0.303908\pi\)
\(84\) 0 0
\(85\) 36802.9 + 113268.i 0.552503 + 1.70043i
\(86\) 49485.2 35953.1i 0.721488 0.524192i
\(87\) 0 0
\(88\) −109283. + 15253.8i −1.50434 + 0.209976i
\(89\) 6612.00 0.0884826 0.0442413 0.999021i \(-0.485913\pi\)
0.0442413 + 0.999021i \(0.485913\pi\)
\(90\) 0 0
\(91\) 5374.62 + 16541.4i 0.0680369 + 0.209396i
\(92\) 22739.7 69985.6i 0.280101 0.862063i
\(93\) 0 0
\(94\) 235428. + 171049.i 2.74814 + 1.99664i
\(95\) 29609.9 91129.9i 0.336611 1.03598i
\(96\) 0 0
\(97\) −103201. + 74979.8i −1.11366 + 0.809124i −0.983237 0.182334i \(-0.941635\pi\)
−0.130427 + 0.991458i \(0.541635\pi\)
\(98\) 152739. 1.60651
\(99\) 0 0
\(100\) 25192.6 0.251926
\(101\) −60612.2 + 44037.4i −0.591231 + 0.429554i −0.842755 0.538297i \(-0.819068\pi\)
0.251525 + 0.967851i \(0.419068\pi\)
\(102\) 0 0
\(103\) 16296.0 50153.8i 0.151352 0.465812i −0.846421 0.532514i \(-0.821247\pi\)
0.997773 + 0.0667013i \(0.0212475\pi\)
\(104\) 126691. + 92046.6i 1.14859 + 0.834496i
\(105\) 0 0
\(106\) 21263.6 65442.7i 0.183812 0.565714i
\(107\) 38090.9 + 117232.i 0.321634 + 0.989888i 0.972937 + 0.231070i \(0.0742228\pi\)
−0.651303 + 0.758818i \(0.725777\pi\)
\(108\) 0 0
\(109\) −134499. −1.08431 −0.542153 0.840280i \(-0.682391\pi\)
−0.542153 + 0.840280i \(0.682391\pi\)
\(110\) −40111.7 + 226239.i −0.316074 + 1.78273i
\(111\) 0 0
\(112\) −17468.4 + 12691.5i −0.131586 + 0.0956025i
\(113\) −10405.9 32026.0i −0.0766623 0.235942i 0.905380 0.424602i \(-0.139586\pi\)
−0.982043 + 0.188659i \(0.939586\pi\)
\(114\) 0 0
\(115\) −58480.5 42488.6i −0.412351 0.299590i
\(116\) −372447. 270598.i −2.56992 1.86715i
\(117\) 0 0
\(118\) −65935.0 202927.i −0.435924 1.34164i
\(119\) −49446.7 + 35925.2i −0.320089 + 0.232558i
\(120\) 0 0
\(121\) −151234. 55367.6i −0.939047 0.343789i
\(122\) −240514. −1.46299
\(123\) 0 0
\(124\) −135902. 418262.i −0.793726 2.44284i
\(125\) −49815.7 + 153317.i −0.285162 + 0.877637i
\(126\) 0 0
\(127\) 189823. + 137914.i 1.04433 + 0.758752i 0.971127 0.238565i \(-0.0766770\pi\)
0.0732059 + 0.997317i \(0.476677\pi\)
\(128\) 104625. 322002.i 0.564430 1.73714i
\(129\) 0 0
\(130\) 263811. 191670.i 1.36910 0.994709i
\(131\) −204823. −1.04280 −0.521399 0.853313i \(-0.674590\pi\)
−0.521399 + 0.853313i \(0.674590\pi\)
\(132\) 0 0
\(133\) 49173.9 0.241049
\(134\) 120994. 87907.4i 0.582106 0.422925i
\(135\) 0 0
\(136\) −170054. + 523371.i −0.788386 + 2.42640i
\(137\) −39015.1 28346.1i −0.177595 0.129030i 0.495436 0.868644i \(-0.335008\pi\)
−0.673032 + 0.739614i \(0.735008\pi\)
\(138\) 0 0
\(139\) 36205.7 111430.i 0.158942 0.489174i −0.839597 0.543210i \(-0.817209\pi\)
0.998539 + 0.0540363i \(0.0172087\pi\)
\(140\) 34015.6 + 104689.i 0.146676 + 0.451421i
\(141\) 0 0
\(142\) −621811. −2.58784
\(143\) 100003. + 205528.i 0.408953 + 0.840486i
\(144\) 0 0
\(145\) −365861. + 265813.i −1.44509 + 1.04992i
\(146\) −131186. 403749.i −0.509337 1.56758i
\(147\) 0 0
\(148\) 64435.6 + 46815.2i 0.241809 + 0.175684i
\(149\) 167138. + 121433.i 0.616751 + 0.448096i 0.851785 0.523891i \(-0.175520\pi\)
−0.235034 + 0.971987i \(0.575520\pi\)
\(150\) 0 0
\(151\) 31098.2 + 95710.5i 0.110992 + 0.341600i 0.991090 0.133193i \(-0.0425231\pi\)
−0.880098 + 0.474793i \(0.842523\pi\)
\(152\) 358192. 260242.i 1.25750 0.913625i
\(153\) 0 0
\(154\) −116783. + 16300.6i −0.396804 + 0.0553862i
\(155\) −432010. −1.44432
\(156\) 0 0
\(157\) 24801.2 + 76330.2i 0.0803014 + 0.247142i 0.983145 0.182826i \(-0.0585246\pi\)
−0.902844 + 0.429969i \(0.858525\pi\)
\(158\) 51872.2 159646.i 0.165307 0.508763i
\(159\) 0 0
\(160\) −96058.8 69790.8i −0.296645 0.215525i
\(161\) 11463.5 35281.0i 0.0348539 0.107269i
\(162\) 0 0
\(163\) 15438.1 11216.4i 0.0455118 0.0330663i −0.564797 0.825230i \(-0.691045\pi\)
0.610309 + 0.792164i \(0.291045\pi\)
\(164\) −353781. −1.02713
\(165\) 0 0
\(166\) 1.14397e6 3.22213
\(167\) −354930. + 257871.i −0.984807 + 0.715504i −0.958778 0.284157i \(-0.908286\pi\)
−0.0260291 + 0.999661i \(0.508286\pi\)
\(168\) 0 0
\(169\) −14495.8 + 44613.4i −0.0390413 + 0.120157i
\(170\) 927060. + 673548.i 2.46029 + 1.78750i
\(171\) 0 0
\(172\) 119002. 366250.i 0.306713 0.943967i
\(173\) −125314. 385677.i −0.318335 0.979734i −0.974360 0.224995i \(-0.927763\pi\)
0.656025 0.754739i \(-0.272237\pi\)
\(174\) 0 0
\(175\) 12700.0 0.0313480
\(176\) −204301. + 196919.i −0.497151 + 0.479189i
\(177\) 0 0
\(178\) 51468.4 37394.0i 0.121756 0.0884610i
\(179\) −112272. 345539.i −0.261903 0.806054i −0.992391 0.123128i \(-0.960707\pi\)
0.730488 0.682926i \(-0.239293\pi\)
\(180\) 0 0
\(181\) 506552. + 368031.i 1.14928 + 0.835004i 0.988386 0.151967i \(-0.0485609\pi\)
0.160898 + 0.986971i \(0.448561\pi\)
\(182\) 135386. + 98363.6i 0.302967 + 0.220118i
\(183\) 0 0
\(184\) −103214. 317661.i −0.224748 0.691703i
\(185\) 63296.2 45987.4i 0.135972 0.0987891i
\(186\) 0 0
\(187\) −578302. + 557408.i −1.20935 + 1.16565i
\(188\) 1.83212e6 3.78060
\(189\) 0 0
\(190\) −284897. 876822.i −0.572537 1.76209i
\(191\) −151049. + 464881.i −0.299595 + 0.922059i 0.682044 + 0.731311i \(0.261091\pi\)
−0.981639 + 0.190748i \(0.938909\pi\)
\(192\) 0 0
\(193\) 109220. + 79352.8i 0.211061 + 0.153345i 0.688294 0.725432i \(-0.258360\pi\)
−0.477233 + 0.878777i \(0.658360\pi\)
\(194\) −379279. + 1.16730e6i −0.723526 + 2.22678i
\(195\) 0 0
\(196\) 777966. 565225.i 1.44651 1.05095i
\(197\) 176847. 0.324662 0.162331 0.986736i \(-0.448099\pi\)
0.162331 + 0.986736i \(0.448099\pi\)
\(198\) 0 0
\(199\) 433048. 0.775181 0.387591 0.921832i \(-0.373307\pi\)
0.387591 + 0.921832i \(0.373307\pi\)
\(200\) 92509.5 67212.1i 0.163535 0.118815i
\(201\) 0 0
\(202\) −222759. + 685582.i −0.384111 + 1.18217i
\(203\) −187757. 136413.i −0.319783 0.232336i
\(204\) 0 0
\(205\) −107391. + 330516.i −0.178478 + 0.549298i
\(206\) −156794. 482564.i −0.257432 0.792294i
\(207\) 0 0
\(208\) 402707. 0.645403
\(209\) 640016. 89333.8i 1.01350 0.141465i
\(210\) 0 0
\(211\) 108834. 79072.6i 0.168290 0.122270i −0.500452 0.865764i \(-0.666833\pi\)
0.668742 + 0.743494i \(0.266833\pi\)
\(212\) −133872. 412017.i −0.204575 0.629616i
\(213\) 0 0
\(214\) 959505. + 697121.i 1.43223 + 1.04058i
\(215\) −306042. 222352.i −0.451528 0.328054i
\(216\) 0 0
\(217\) −68510.4 210853.i −0.0987659 0.303970i
\(218\) −1.04695e6 + 760654.i −1.49206 + 1.08404i
\(219\) 0 0
\(220\) 632913. + 1.30077e6i 0.881632 + 1.81194i
\(221\) 1.13992e6 1.56998
\(222\) 0 0
\(223\) −235726. 725489.i −0.317428 0.976942i −0.974744 0.223327i \(-0.928308\pi\)
0.657316 0.753615i \(-0.271692\pi\)
\(224\) 18829.6 57951.7i 0.0250739 0.0771695i
\(225\) 0 0
\(226\) −262122. 190443.i −0.341376 0.248024i
\(227\) 33519.6 103163.i 0.0431752 0.132880i −0.927145 0.374702i \(-0.877745\pi\)
0.970321 + 0.241822i \(0.0777451\pi\)
\(228\) 0 0
\(229\) 423208. 307479.i 0.533292 0.387459i −0.288296 0.957541i \(-0.593089\pi\)
0.821588 + 0.570082i \(0.193089\pi\)
\(230\) −695511. −0.866931
\(231\) 0 0
\(232\) −2.08959e6 −2.54884
\(233\) 177464. 128935.i 0.214152 0.155590i −0.475539 0.879695i \(-0.657747\pi\)
0.689690 + 0.724105i \(0.257747\pi\)
\(234\) 0 0
\(235\) 556146. 1.71164e6i 0.656930 2.02182i
\(236\) −1.08679e6 789598.i −1.27018 0.922840i
\(237\) 0 0
\(238\) −181724. + 559290.i −0.207955 + 0.640021i
\(239\) −149117. 458935.i −0.168862 0.519704i 0.830438 0.557111i \(-0.188090\pi\)
−0.999300 + 0.0374068i \(0.988090\pi\)
\(240\) 0 0
\(241\) −472230. −0.523734 −0.261867 0.965104i \(-0.584338\pi\)
−0.261867 + 0.965104i \(0.584338\pi\)
\(242\) −1.49035e6 + 424316.i −1.63588 + 0.465748i
\(243\) 0 0
\(244\) −1.22505e6 + 890048.i −1.31728 + 0.957060i
\(245\) −291902. 898381.i −0.310686 0.956193i
\(246\) 0 0
\(247\) −741969. 539072.i −0.773827 0.562218i
\(248\) −1.61494e6 1.17332e6i −1.66735 1.21140i
\(249\) 0 0
\(250\) 479310. + 1.47516e6i 0.485028 + 1.49276i
\(251\) 296517. 215432.i 0.297074 0.215837i −0.429256 0.903183i \(-0.641224\pi\)
0.726330 + 0.687346i \(0.241224\pi\)
\(252\) 0 0
\(253\) 85106.5 480020.i 0.0835914 0.471474i
\(254\) 2.25757e6 2.19562
\(255\) 0 0
\(256\) −593079. 1.82531e6i −0.565604 1.74075i
\(257\) −520203. + 1.60102e6i −0.491292 + 1.51204i 0.331363 + 0.943503i \(0.392491\pi\)
−0.822656 + 0.568540i \(0.807509\pi\)
\(258\) 0 0
\(259\) 32483.1 + 23600.4i 0.0300890 + 0.0218610i
\(260\) 634413. 1.95252e6i 0.582021 1.79128i
\(261\) 0 0
\(262\) −1.59436e6 + 1.15837e6i −1.43494 + 1.04254i
\(263\) 1.52341e6 1.35808 0.679042 0.734100i \(-0.262396\pi\)
0.679042 + 0.734100i \(0.262396\pi\)
\(264\) 0 0
\(265\) −425560. −0.372259
\(266\) 382774. 278102.i 0.331695 0.240990i
\(267\) 0 0
\(268\) 290966. 895502.i 0.247460 0.761605i
\(269\) −55575.7 40378.1i −0.0468278 0.0340224i 0.564125 0.825689i \(-0.309214\pi\)
−0.610953 + 0.791667i \(0.709214\pi\)
\(270\) 0 0
\(271\) 367114. 1.12986e6i 0.303653 0.934549i −0.676523 0.736422i \(-0.736514\pi\)
0.980176 0.198128i \(-0.0634860\pi\)
\(272\) 437306. + 1.34589e6i 0.358396 + 1.10303i
\(273\) 0 0
\(274\) −464008. −0.373378
\(275\) 165295. 23072.1i 0.131804 0.0183973i
\(276\) 0 0
\(277\) 1.22085e6 887001.i 0.956012 0.694583i 0.00379098 0.999993i \(-0.498793\pi\)
0.952221 + 0.305409i \(0.0987933\pi\)
\(278\) −348359. 1.07214e6i −0.270343 0.832030i
\(279\) 0 0
\(280\) 404212. + 293677.i 0.308116 + 0.223859i
\(281\) 1.13878e6 + 827375.i 0.860351 + 0.625081i 0.927980 0.372629i \(-0.121544\pi\)
−0.0676296 + 0.997710i \(0.521544\pi\)
\(282\) 0 0
\(283\) 99556.9 + 306405.i 0.0738933 + 0.227420i 0.981181 0.193090i \(-0.0618510\pi\)
−0.907288 + 0.420510i \(0.861851\pi\)
\(284\) −3.16716e6 + 2.30108e6i −2.33010 + 1.69292i
\(285\) 0 0
\(286\) 1.94079e6 + 1.03428e6i 1.40302 + 0.747694i
\(287\) −178347. −0.127809
\(288\) 0 0
\(289\) 799097. + 2.45937e6i 0.562801 + 1.73212i
\(290\) −1.34459e6 + 4.13823e6i −0.938849 + 2.88948i
\(291\) 0 0
\(292\) −2.16230e6 1.57101e6i −1.48409 1.07825i
\(293\) 437404. 1.34619e6i 0.297656 0.916090i −0.684661 0.728862i \(-0.740050\pi\)
0.982317 0.187228i \(-0.0599503\pi\)
\(294\) 0 0
\(295\) −1.06757e6 + 775636.i −0.714236 + 0.518923i
\(296\) 361513. 0.239825
\(297\) 0 0
\(298\) 1.98778e6 1.29666
\(299\) −559739. + 406674.i −0.362082 + 0.263068i
\(300\) 0 0
\(301\) 59990.9 184633.i 0.0381654 0.117461i
\(302\) 783360. + 569144.i 0.494247 + 0.359091i
\(303\) 0 0
\(304\) 351836. 1.08284e6i 0.218352 0.672018i
\(305\) 459652. + 1.41466e6i 0.282930 + 0.870769i
\(306\) 0 0
\(307\) 637505. 0.386045 0.193022 0.981194i \(-0.438171\pi\)
0.193022 + 0.981194i \(0.438171\pi\)
\(308\) −534504. + 515192.i −0.321051 + 0.309451i
\(309\) 0 0
\(310\) −3.36281e6 + 2.44322e6i −1.98746 + 1.44397i
\(311\) 345172. + 1.06233e6i 0.202364 + 0.622814i 0.999811 + 0.0194245i \(0.00618340\pi\)
−0.797447 + 0.603389i \(0.793817\pi\)
\(312\) 0 0
\(313\) 2.41362e6 + 1.75360e6i 1.39254 + 1.01174i 0.995581 + 0.0939055i \(0.0299352\pi\)
0.396961 + 0.917836i \(0.370065\pi\)
\(314\) 624738. + 453899.i 0.357581 + 0.259798i
\(315\) 0 0
\(316\) −326579. 1.00511e6i −0.183980 0.566232i
\(317\) 1.58238e6 1.14966e6i 0.884426 0.642573i −0.0499930 0.998750i \(-0.515920\pi\)
0.934419 + 0.356177i \(0.115920\pi\)
\(318\) 0 0
\(319\) −2.69154e6 1.43437e6i −1.48090 0.789196i
\(320\) −2.48880e6 −1.35867
\(321\) 0 0
\(322\) −110298. 339462.i −0.0592826 0.182453i
\(323\) 995922. 3.06513e6i 0.531152 1.63472i
\(324\) 0 0
\(325\) −191627. 139225.i −0.100635 0.0731154i
\(326\) 56737.3 174619.i 0.0295682 0.0910014i
\(327\) 0 0
\(328\) −1.29912e6 + 943863.i −0.666750 + 0.484422i
\(329\) 923606. 0.470432
\(330\) 0 0
\(331\) −340808. −0.170978 −0.0854888 0.996339i \(-0.527245\pi\)
−0.0854888 + 0.996339i \(0.527245\pi\)
\(332\) 5.82672e6 4.23336e6i 2.90121 2.10785i
\(333\) 0 0
\(334\) −1.30442e6 + 4.01459e6i −0.639810 + 1.96913i
\(335\) −748289. 543664.i −0.364299 0.264678i
\(336\) 0 0
\(337\) 1.24336e6 3.82667e6i 0.596380 1.83547i 0.0486436 0.998816i \(-0.484510\pi\)
0.547736 0.836651i \(-0.315490\pi\)
\(338\) 139473. + 429255.i 0.0664049 + 0.204373i
\(339\) 0 0
\(340\) 7.21446e6 3.38459
\(341\) −1.27474e6 2.61987e6i −0.593658 1.22009i
\(342\) 0 0
\(343\) 807412. 586619.i 0.370561 0.269228i
\(344\) −540143. 1.66239e6i −0.246101 0.757420i
\(345\) 0 0
\(346\) −3.15664e6 2.29343e6i −1.41754 1.02990i
\(347\) −3.21125e6 2.33311e6i −1.43170 1.04019i −0.989698 0.143173i \(-0.954269\pi\)
−0.441999 0.897015i \(-0.645731\pi\)
\(348\) 0 0
\(349\) −590291. 1.81673e6i −0.259420 0.798412i −0.992927 0.118730i \(-0.962118\pi\)
0.733507 0.679682i \(-0.237882\pi\)
\(350\) 98858.3 71824.8i 0.0431363 0.0313404i
\(351\) 0 0
\(352\) 139794. 788469.i 0.0601356 0.339178i
\(353\) −4.22138e6 −1.80309 −0.901545 0.432686i \(-0.857566\pi\)
−0.901545 + 0.432686i \(0.857566\pi\)
\(354\) 0 0
\(355\) 1.18835e6 + 3.65738e6i 0.500467 + 1.54028i
\(356\) 123771. 380928.i 0.0517600 0.159301i
\(357\) 0 0
\(358\) −2.82812e6 2.05475e6i −1.16625 0.847329i
\(359\) −473019. + 1.45580e6i −0.193706 + 0.596165i 0.806284 + 0.591529i \(0.201476\pi\)
−0.999989 + 0.00463543i \(0.998524\pi\)
\(360\) 0 0
\(361\) −94551.5 + 68695.7i −0.0381857 + 0.0277435i
\(362\) 6.02444e6 2.41627
\(363\) 0 0
\(364\) 1.05359e6 0.416789
\(365\) −2.12407e6 + 1.54323e6i −0.834519 + 0.606313i
\(366\) 0 0
\(367\) −474852. + 1.46144e6i −0.184032 + 0.566392i −0.999930 0.0118031i \(-0.996243\pi\)
0.815898 + 0.578195i \(0.196243\pi\)
\(368\) −694889. 504866.i −0.267483 0.194338i
\(369\) 0 0
\(370\) 232623. 715940.i 0.0883382 0.271877i
\(371\) −67487.5 207705.i −0.0254559 0.0783452i
\(372\) 0 0
\(373\) 1.42900e6 0.531816 0.265908 0.963998i \(-0.414328\pi\)
0.265908 + 0.963998i \(0.414328\pi\)
\(374\) −1.34915e6 + 7.60949e6i −0.498747 + 2.81304i
\(375\) 0 0
\(376\) 6.72772e6 4.88798e6i 2.45413 1.78303i
\(377\) 1.33756e6 + 4.11660e6i 0.484686 + 1.49171i
\(378\) 0 0
\(379\) −2.31879e6 1.68470e6i −0.829208 0.602455i 0.0901273 0.995930i \(-0.471273\pi\)
−0.919335 + 0.393476i \(0.871273\pi\)
\(380\) −4.69587e6 3.41175e6i −1.66824 1.21204i
\(381\) 0 0
\(382\) 1.45334e6 + 4.47293e6i 0.509577 + 1.56832i
\(383\) 2.30326e6 1.67341e6i 0.802316 0.582917i −0.109277 0.994011i \(-0.534853\pi\)
0.911593 + 0.411095i \(0.134853\pi\)
\(384\) 0 0
\(385\) 319063. + 655742.i 0.109704 + 0.225466i
\(386\) 1.29895e6 0.443737
\(387\) 0 0
\(388\) 2.38788e6 + 7.34914e6i 0.805254 + 2.47832i
\(389\) −1.45681e6 + 4.48361e6i −0.488124 + 1.50229i 0.339281 + 0.940685i \(0.389816\pi\)
−0.827405 + 0.561606i \(0.810184\pi\)
\(390\) 0 0
\(391\) −1.96698e6 1.42909e6i −0.650665 0.472736i
\(392\) 1.34878e6 4.15111e6i 0.443328 1.36442i
\(393\) 0 0
\(394\) 1.37659e6 1.00015e6i 0.446750 0.324583i
\(395\) −1.03814e6 −0.334784
\(396\) 0 0
\(397\) 3.61747e6 1.15194 0.575968 0.817472i \(-0.304625\pi\)
0.575968 + 0.817472i \(0.304625\pi\)
\(398\) 3.37089e6 2.44909e6i 1.06669 0.774992i
\(399\) 0 0
\(400\) 90868.0 279663.i 0.0283963 0.0873947i
\(401\) −2.81971e6 2.04864e6i −0.875677 0.636217i 0.0564269 0.998407i \(-0.482029\pi\)
−0.932104 + 0.362190i \(0.882029\pi\)
\(402\) 0 0
\(403\) −1.27776e6 + 3.93255e6i −0.391911 + 1.20618i
\(404\) 1.40246e6 + 4.31632e6i 0.427500 + 1.31571i
\(405\) 0 0
\(406\) −2.23300e6 −0.672316
\(407\) 465654. + 248155.i 0.139340 + 0.0742570i
\(408\) 0 0
\(409\) −2.68736e6 + 1.95248e6i −0.794361 + 0.577137i −0.909254 0.416241i \(-0.863347\pi\)
0.114893 + 0.993378i \(0.463347\pi\)
\(410\) 1.03328e6 + 3.18012e6i 0.303570 + 0.934294i
\(411\) 0 0
\(412\) −2.58440e6 1.87768e6i −0.750096 0.544976i
\(413\) −547869. 398050.i −0.158053 0.114832i
\(414\) 0 0
\(415\) −2.18625e6 6.72860e6i −0.623133 1.91780i
\(416\) −919413. + 667993.i −0.260482 + 0.189251i
\(417\) 0 0
\(418\) 4.47672e6 4.31498e6i 1.25320 1.20792i
\(419\) 5.09570e6 1.41798 0.708988 0.705221i \(-0.249152\pi\)
0.708988 + 0.705221i \(0.249152\pi\)
\(420\) 0 0
\(421\) 988417. + 3.04204e6i 0.271791 + 0.836487i 0.990051 + 0.140711i \(0.0449390\pi\)
−0.718260 + 0.695775i \(0.755061\pi\)
\(422\) 399982. 1.23102e6i 0.109335 0.336498i
\(423\) 0 0
\(424\) −1.59082e6 1.15580e6i −0.429741 0.312225i
\(425\) 257215. 791625.i 0.0690754 0.212592i
\(426\) 0 0
\(427\) −617567. + 448689.i −0.163913 + 0.119090i
\(428\) 7.46696e6 1.97031
\(429\) 0 0
\(430\) −3.63976e6 −0.949297
\(431\) −1.32555e6 + 963072.i −0.343720 + 0.249727i −0.746230 0.665689i \(-0.768138\pi\)
0.402510 + 0.915416i \(0.368138\pi\)
\(432\) 0 0
\(433\) −69567.6 + 214107.i −0.0178315 + 0.0548796i −0.959576 0.281449i \(-0.909185\pi\)
0.941745 + 0.336328i \(0.109185\pi\)
\(434\) −1.72577e6 1.25384e6i −0.439803 0.319535i
\(435\) 0 0
\(436\) −2.51770e6 + 7.74870e6i −0.634291 + 1.95215i
\(437\) 604476. + 1.86039e6i 0.151417 + 0.466015i
\(438\) 0 0
\(439\) 119483. 0.0295899 0.0147950 0.999891i \(-0.495290\pi\)
0.0147950 + 0.999891i \(0.495290\pi\)
\(440\) 5.79448e6 + 3.08798e6i 1.42686 + 0.760401i
\(441\) 0 0
\(442\) 8.87323e6 6.44678e6i 2.16036 1.56959i
\(443\) 287495. + 884819.i 0.0696019 + 0.214213i 0.979807 0.199945i \(-0.0640763\pi\)
−0.910205 + 0.414157i \(0.864076\pi\)
\(444\) 0 0
\(445\) −318307. 231264.i −0.0761984 0.0553614i
\(446\) −5.93789e6 4.31413e6i −1.41350 1.02697i
\(447\) 0 0
\(448\) −394687. 1.21472e6i −0.0929091 0.285945i
\(449\) −5.50754e6 + 4.00146e6i −1.28926 + 0.936705i −0.999790 0.0204816i \(-0.993480\pi\)
−0.289473 + 0.957186i \(0.593480\pi\)
\(450\) 0 0
\(451\) −2.32125e6 + 324002.i −0.537379 + 0.0750078i
\(452\) −2.03986e6 −0.469628
\(453\) 0 0
\(454\) −322515. 992599.i −0.0734362 0.226013i
\(455\) 319818. 984300.i 0.0724228 0.222894i
\(456\) 0 0
\(457\) 6.73792e6 + 4.89539e6i 1.50916 + 1.09647i 0.966548 + 0.256487i \(0.0825651\pi\)
0.542613 + 0.839983i \(0.317435\pi\)
\(458\) 1.55535e6 4.78689e6i 0.346470 1.06632i
\(459\) 0 0
\(460\) −3.54255e6 + 2.57381e6i −0.780586 + 0.567129i
\(461\) 164594. 0.0360713 0.0180356 0.999837i \(-0.494259\pi\)
0.0180356 + 0.999837i \(0.494259\pi\)
\(462\) 0 0
\(463\) −243247. −0.0527345 −0.0263672 0.999652i \(-0.508394\pi\)
−0.0263672 + 0.999652i \(0.508394\pi\)
\(464\) −4.34730e6 + 3.15850e6i −0.937399 + 0.681060i
\(465\) 0 0
\(466\) 652208. 2.00729e6i 0.139130 0.428199i
\(467\) 2.64014e6 + 1.91818e6i 0.560190 + 0.407002i 0.831529 0.555482i \(-0.187466\pi\)
−0.271338 + 0.962484i \(0.587466\pi\)
\(468\) 0 0
\(469\) 146681. 451438.i 0.0307923 0.0947690i
\(470\) −5.35105e6 1.64688e7i −1.11736 3.43889i
\(471\) 0 0
\(472\) −6.09738e6 −1.25976
\(473\) 445381. 2.51205e6i 0.0915333 0.516268i
\(474\) 0 0
\(475\) −541783. + 393629.i −0.110177 + 0.0800484i
\(476\) 1.14411e6 + 3.52120e6i 0.231446 + 0.712317i
\(477\) 0 0
\(478\) −3.75624e6 2.72906e6i −0.751940 0.546316i
\(479\) −1.20525e6 875663.i −0.240014 0.174381i 0.461275 0.887257i \(-0.347392\pi\)
−0.701290 + 0.712876i \(0.747392\pi\)
\(480\) 0 0
\(481\) −231407. 712197.i −0.0456051 0.140358i
\(482\) −3.67588e6 + 2.67068e6i −0.720682 + 0.523606i
\(483\) 0 0
\(484\) −6.02080e6 + 7.67643e6i −1.16826 + 1.48952i
\(485\) 7.59069e6 1.46530
\(486\) 0 0
\(487\) −1.55402e6 4.78278e6i −0.296916 0.913815i −0.982571 0.185888i \(-0.940484\pi\)
0.685654 0.727927i \(-0.259516\pi\)
\(488\) −2.12389e6 + 6.53667e6i −0.403723 + 1.24253i
\(489\) 0 0
\(490\) −7.35296e6 5.34224e6i −1.38348 1.00516i
\(491\) 1.37605e6 4.23504e6i 0.257590 0.792781i −0.735718 0.677288i \(-0.763155\pi\)
0.993308 0.115493i \(-0.0368449\pi\)
\(492\) 0 0
\(493\) −1.23056e7 + 8.94057e6i −2.28027 + 1.65671i
\(494\) −8.82427e6 −1.62690
\(495\) 0 0
\(496\) −5.13331e6 −0.936900
\(497\) −1.59662e6 + 1.16001e6i −0.289942 + 0.210655i
\(498\) 0 0
\(499\) −2.40259e6 + 7.39441e6i −0.431945 + 1.32939i 0.464241 + 0.885709i \(0.346327\pi\)
−0.896185 + 0.443680i \(0.853673\pi\)
\(500\) 7.90034e6 + 5.73993e6i 1.41326 + 1.02679i
\(501\) 0 0
\(502\) 1.08974e6 3.35389e6i 0.193004 0.594004i
\(503\) 996062. + 3.06556e6i 0.175536 + 0.540244i 0.999658 0.0261687i \(-0.00833070\pi\)
−0.824122 + 0.566413i \(0.808331\pi\)
\(504\) 0 0
\(505\) 4.45819e6 0.777911
\(506\) −2.05226e6 4.21783e6i −0.356333 0.732341i
\(507\) 0 0
\(508\) 1.14988e7 8.35436e6i 1.97694 1.43633i
\(509\) −383192. 1.17934e6i −0.0655575 0.201765i 0.912912 0.408156i \(-0.133828\pi\)
−0.978470 + 0.206391i \(0.933828\pi\)
\(510\) 0 0
\(511\) −1.09006e6 791972.i −0.184670 0.134171i
\(512\) −6.17441e6 4.48597e6i −1.04093 0.756278i
\(513\) 0 0
\(514\) 5.00522e6 + 1.54045e7i 0.835633 + 2.57181i
\(515\) −2.53870e6 + 1.84447e6i −0.421787 + 0.306446i
\(516\) 0 0
\(517\) 1.20211e7 1.67791e6i 1.97795 0.276084i
\(518\) 386323. 0.0632596
\(519\) 0 0
\(520\) −2.87957e6 8.86240e6i −0.467002 1.43728i
\(521\) 1.39277e6 4.28651e6i 0.224795 0.691846i −0.773518 0.633775i \(-0.781505\pi\)
0.998312 0.0580720i \(-0.0184953\pi\)
\(522\) 0 0
\(523\) −1.83670e6 1.33444e6i −0.293620 0.213327i 0.431216 0.902249i \(-0.358085\pi\)
−0.724836 + 0.688921i \(0.758085\pi\)
\(524\) −3.83412e6 + 1.18002e7i −0.610010 + 1.87742i
\(525\) 0 0
\(526\) 1.18583e7 8.61559e6i 1.86879 1.35775i
\(527\) −1.45305e7 −2.27906
\(528\) 0 0
\(529\) −4.96065e6 −0.770725
\(530\) −3.31260e6 + 2.40674e6i −0.512246 + 0.372169i
\(531\) 0 0
\(532\) 920495. 2.83299e6i 0.141008 0.433977i
\(533\) 2.69103e6 + 1.95514e6i 0.410298 + 0.298099i
\(534\) 0 0
\(535\) 2.26661e6 6.97592e6i 0.342368 1.05370i
\(536\) −1.32068e6 4.06464e6i −0.198557 0.611097i
\(537\) 0 0
\(538\) −660963. −0.0984514
\(539\) 4.58679e6 4.42107e6i 0.680044 0.655475i
\(540\) 0 0
\(541\) 594522. 431945.i 0.0873322 0.0634506i −0.543262 0.839563i \(-0.682811\pi\)
0.630595 + 0.776112i \(0.282811\pi\)
\(542\) −3.53225e6 1.08712e7i −0.516480 1.58956i
\(543\) 0 0
\(544\) −3.23091e6 2.34740e6i −0.468089 0.340086i
\(545\) 6.47488e6 + 4.70427e6i 0.933771 + 0.678424i
\(546\) 0 0
\(547\) −3.11865e6 9.59822e6i −0.445655 1.37158i −0.881764 0.471690i \(-0.843644\pi\)
0.436110 0.899894i \(-0.356356\pi\)
\(548\) −2.36340e6 + 1.71711e6i −0.336191 + 0.244257i
\(549\) 0 0
\(550\) 1.15619e6 1.11442e6i 0.162976 0.157088i
\(551\) 1.22377e7 1.71721
\(552\) 0 0
\(553\) −164634. 506692.i −0.0228932 0.0704582i
\(554\) 4.48681e6 1.38090e7i 0.621103 1.91156i
\(555\) 0 0
\(556\) −5.74190e6 4.17174e6i −0.787715 0.572308i
\(557\) 529373. 1.62924e6i 0.0722976 0.222509i −0.908378 0.418150i \(-0.862679\pi\)
0.980676 + 0.195641i \(0.0626787\pi\)
\(558\) 0 0
\(559\) −2.92924e6 + 2.12821e6i −0.396483 + 0.288062i
\(560\) 1.28485e6 0.173134
\(561\) 0 0
\(562\) 1.35436e7 1.80881
\(563\) −3.57065e6 + 2.59423e6i −0.474763 + 0.344935i −0.799294 0.600940i \(-0.794793\pi\)
0.324532 + 0.945875i \(0.394793\pi\)
\(564\) 0 0
\(565\) −619204. + 1.90571e6i −0.0816042 + 0.251152i
\(566\) 2.50782e6 + 1.82204e6i 0.329045 + 0.239065i
\(567\) 0 0
\(568\) −5.49098e6 + 1.68995e7i −0.714133 + 2.19788i
\(569\) 1.31326e6 + 4.04181e6i 0.170048 + 0.523354i 0.999373 0.0354130i \(-0.0112747\pi\)
−0.829325 + 0.558767i \(0.811275\pi\)
\(570\) 0 0
\(571\) 2.86179e6 0.367322 0.183661 0.982990i \(-0.441205\pi\)
0.183661 + 0.982990i \(0.441205\pi\)
\(572\) 1.37128e7 1.91404e6i 1.75241 0.244603i
\(573\) 0 0
\(574\) −1.38827e6 + 1.00864e6i −0.175871 + 0.127778i
\(575\) 156117. + 480478.i 0.0196916 + 0.0606044i
\(576\) 0 0
\(577\) 7.56221e6 + 5.49427e6i 0.945604 + 0.687022i 0.949763 0.312970i \(-0.101324\pi\)
−0.00415903 + 0.999991i \(0.501324\pi\)
\(578\) 2.01291e7 + 1.46247e7i 2.50614 + 1.82082i
\(579\) 0 0
\(580\) 8.46534e6 + 2.60536e7i 1.04490 + 3.21587i
\(581\) 2.93735e6 2.13411e6i 0.361007 0.262287i
\(582\) 0 0
\(583\) −1.25571e6 2.58075e6i −0.153009 0.314467i
\(584\) −1.21315e7 −1.47191
\(585\) 0 0
\(586\) −4.20856e6 1.29526e7i −0.506278 1.55816i
\(587\) 81580.3 251078.i 0.00977214 0.0300756i −0.946052 0.324016i \(-0.894967\pi\)
0.955824 + 0.293941i \(0.0949668\pi\)
\(588\) 0 0
\(589\) 9.45790e6 + 6.87156e6i 1.12333 + 0.816145i
\(590\) −3.92348e6 + 1.20752e7i −0.464025 + 1.42812i
\(591\) 0 0
\(592\) 752110. 546440.i 0.0882017 0.0640823i
\(593\) 1.46405e6 0.170969 0.0854846 0.996339i \(-0.472756\pi\)
0.0854846 + 0.996339i \(0.472756\pi\)
\(594\) 0 0
\(595\) 3.63694e6 0.421156
\(596\) 1.01246e7 7.35598e6i 1.16752 0.848253i
\(597\) 0 0
\(598\) −2.05712e6 + 6.33117e6i −0.235238 + 0.723988i
\(599\) 1.04245e6 + 757382.i 0.118710 + 0.0862478i 0.645556 0.763713i \(-0.276626\pi\)
−0.526846 + 0.849961i \(0.676626\pi\)
\(600\) 0 0
\(601\) −3.84287e6 + 1.18271e7i −0.433980 + 1.33565i 0.460148 + 0.887842i \(0.347796\pi\)
−0.894128 + 0.447811i \(0.852204\pi\)
\(602\) −577213. 1.77648e6i −0.0649149 0.199788i
\(603\) 0 0
\(604\) 6.09618e6 0.679932
\(605\) 5.34399e6 + 7.95507e6i 0.593577 + 0.883599i
\(606\) 0 0
\(607\) −1.14217e7 + 8.29837e6i −1.25823 + 0.914157i −0.998669 0.0515694i \(-0.983578\pi\)
−0.259560 + 0.965727i \(0.583578\pi\)
\(608\) 992898. + 3.05583e6i 0.108930 + 0.335251i
\(609\) 0 0
\(610\) 1.15786e7 + 8.41231e6i 1.25988 + 0.915358i
\(611\) −1.39360e7 1.01251e7i −1.51020 1.09723i
\(612\) 0 0
\(613\) −5.18824e6 1.59678e7i −0.557659 1.71630i −0.688815 0.724937i \(-0.741869\pi\)
0.131156 0.991362i \(-0.458131\pi\)
\(614\) 4.96240e6 3.60539e6i 0.531215 0.385950i
\(615\) 0 0
\(616\) −588248. + 3.31785e6i −0.0624610 + 0.352294i
\(617\) 1.49155e6 0.157734 0.0788670 0.996885i \(-0.474870\pi\)
0.0788670 + 0.996885i \(0.474870\pi\)
\(618\) 0 0
\(619\) 2.45026e6 + 7.54111e6i 0.257031 + 0.791059i 0.993423 + 0.114504i \(0.0365278\pi\)
−0.736392 + 0.676555i \(0.763472\pi\)
\(620\) −8.08687e6 + 2.48888e7i −0.844892 + 2.60031i
\(621\) 0 0
\(622\) 8.69482e6 + 6.31716e6i 0.901125 + 0.654705i
\(623\) 62395.2 192033.i 0.00644067 0.0198223i
\(624\) 0 0
\(625\) 8.81205e6 6.40233e6i 0.902354 0.655599i
\(626\) 2.87053e7 2.92770
\(627\) 0 0
\(628\) 4.86177e6 0.491921
\(629\) 2.12895e6 1.54677e6i 0.214555 0.155884i
\(630\) 0 0
\(631\) 3.59807e6 1.10737e7i 0.359747 1.10719i −0.593459 0.804864i \(-0.702238\pi\)
0.953206 0.302322i \(-0.0977619\pi\)
\(632\) −3.88078e6 2.81955e6i −0.386479 0.280794i
\(633\) 0 0
\(634\) 5.81547e6 1.78982e7i 0.574594 1.76842i
\(635\) −4.31448e6 1.32786e7i −0.424614 1.30683i
\(636\) 0 0
\(637\) −9.04124e6 −0.882835
\(638\) −2.90633e7 + 4.05667e6i −2.82679 + 0.394565i
\(639\) 0 0
\(640\) −1.62992e7 + 1.18421e7i −1.57295 + 1.14282i
\(641\) 1.70566e6 + 5.24949e6i 0.163964 + 0.504628i 0.998958 0.0456295i \(-0.0145294\pi\)
−0.834995 + 0.550258i \(0.814529\pi\)
\(642\) 0 0
\(643\) 4.00037e6 + 2.90644e6i 0.381569 + 0.277226i 0.761992 0.647587i \(-0.224222\pi\)
−0.380423 + 0.924813i \(0.624222\pi\)
\(644\) −1.81801e6 1.32086e6i −0.172735 0.125500i
\(645\) 0 0
\(646\) −9.58243e6 2.94917e7i −0.903430 2.78047i
\(647\) −5.86897e6 + 4.26406e6i −0.551190 + 0.400463i −0.828224 0.560397i \(-0.810649\pi\)
0.277034 + 0.960860i \(0.410649\pi\)
\(648\) 0 0
\(649\) −7.85384e6 4.18545e6i −0.731932 0.390060i
\(650\) −2.27903e6 −0.211576
\(651\) 0 0
\(652\) −357209. 1.09938e6i −0.0329081 0.101281i
\(653\) 6.04957e6 1.86186e7i 0.555189 1.70870i −0.140253 0.990116i \(-0.544792\pi\)
0.695443 0.718582i \(-0.255208\pi\)
\(654\) 0 0
\(655\) 9.86034e6 + 7.16396e6i 0.898025 + 0.652454i
\(656\) −1.27606e6 + 3.92732e6i −0.115774 + 0.356317i
\(657\) 0 0
\(658\) 7.18943e6 5.22343e6i 0.647336 0.470317i
\(659\) −4.24342e6 −0.380630 −0.190315 0.981723i \(-0.560951\pi\)
−0.190315 + 0.981723i \(0.560951\pi\)
\(660\) 0 0
\(661\) 1.86117e7 1.65685 0.828424 0.560101i \(-0.189238\pi\)
0.828424 + 0.560101i \(0.189238\pi\)
\(662\) −2.65288e6 + 1.92743e6i −0.235273 + 0.170936i
\(663\) 0 0
\(664\) 1.01019e7 3.10906e7i 0.889169 2.73658i
\(665\) −2.36727e6 1.71992e6i −0.207584 0.150819i
\(666\) 0 0
\(667\) 2.85287e6 8.78025e6i 0.248295 0.764174i
\(668\) 8.21242e6 + 2.52752e7i 0.712082 + 2.19156i
\(669\) 0 0
\(670\) −8.89943e6 −0.765906
\(671\) −7.22272e6 + 6.96177e6i −0.619291 + 0.596916i
\(672\) 0 0
\(673\) −1.23020e7 + 8.93791e6i −1.04698 + 0.760674i −0.971635 0.236484i \(-0.924005\pi\)
−0.0753420 + 0.997158i \(0.524005\pi\)
\(674\) −1.19632e7 3.68190e7i −1.01437 3.12192i
\(675\) 0 0
\(676\) 2.29890e6 + 1.67025e6i 0.193488 + 0.140577i
\(677\) −6.61522e6 4.80624e6i −0.554719 0.403027i 0.274803 0.961500i \(-0.411387\pi\)
−0.829522 + 0.558474i \(0.811387\pi\)
\(678\) 0 0
\(679\) 1.20377e6 + 3.70483e6i 0.100200 + 0.308385i
\(680\) 2.64921e7 1.92477e7i 2.19707 1.59627i
\(681\) 0 0
\(682\) −2.47393e7 1.31840e7i −2.03670 1.08539i
\(683\) −7.72453e6 −0.633608 −0.316804 0.948491i \(-0.602610\pi\)
−0.316804 + 0.948491i \(0.602610\pi\)
\(684\) 0 0
\(685\) 886774. + 2.72921e6i 0.0722082 + 0.222234i
\(686\) 2.96736e6 9.13259e6i 0.240746 0.740941i
\(687\) 0 0
\(688\) −3.63651e6 2.64208e6i −0.292896 0.212801i
\(689\) −1.25868e6 + 3.87383e6i −0.101011 + 0.310880i
\(690\) 0 0
\(691\) −1.62835e7 + 1.18307e7i −1.29734 + 0.942573i −0.999926 0.0121760i \(-0.996124\pi\)
−0.297414 + 0.954749i \(0.596124\pi\)
\(692\) −2.45653e7 −1.95010
\(693\) 0 0
\(694\) −3.81916e7 −3.01002
\(695\) −5.64037e6 + 4.09797e6i −0.442940 + 0.321815i
\(696\) 0 0
\(697\) −3.61208e6 + 1.11168e7i −0.281627 + 0.866760i
\(698\) −1.48694e7 1.08032e7i −1.15519 0.839295i
\(699\) 0 0
\(700\) 237734. 731671.i 0.0183378 0.0564379i
\(701\) 2.29781e6 + 7.07193e6i 0.176611 + 0.543554i 0.999703 0.0243541i \(-0.00775291\pi\)
−0.823092 + 0.567908i \(0.807753\pi\)
\(702\) 0 0
\(703\) −2.11721e6 −0.161575
\(704\) −7.34377e6 1.50930e7i −0.558454 1.14774i
\(705\) 0 0
\(706\) −3.28596e7 + 2.38739e7i −2.48113 + 1.80265i
\(707\) 707003. + 2.17593e6i 0.0531952 + 0.163718i
\(708\) 0 0
\(709\) 5.35574e6 + 3.89117e6i 0.400132 + 0.290713i 0.769595 0.638533i \(-0.220458\pi\)
−0.369463 + 0.929246i \(0.620458\pi\)
\(710\) 2.99345e7 + 2.17487e7i 2.22857 + 1.61915i
\(711\) 0 0
\(712\) −561791. 1.72901e6i −0.0415312 0.127820i
\(713\) 7.13500e6 5.18388e6i 0.525618 0.381884i
\(714\) 0 0
\(715\) 2.37438e6 1.33920e7i 0.173694 0.979673i
\(716\) −2.20087e7 −1.60440
\(717\) 0 0
\(718\) 4.55123e6 + 1.40072e7i 0.329471 + 1.01401i
\(719\) −5.35083e6 + 1.64682e7i −0.386010 + 1.18802i 0.549735 + 0.835339i \(0.314729\pi\)
−0.935745 + 0.352678i \(0.885271\pi\)
\(720\) 0 0
\(721\) −1.30284e6 946569.i −0.0933369 0.0678132i
\(722\) −347491. + 1.06947e6i −0.0248085 + 0.0763528i
\(723\) 0 0
\(724\) 3.06851e7 2.22941e7i 2.17561 1.58068i
\(725\) 3.16061e6 0.223319
\(726\) 0 0
\(727\) 1.02515e7 0.719366 0.359683 0.933075i \(-0.382885\pi\)
0.359683 + 0.933075i \(0.382885\pi\)
\(728\) 3.86886e6 2.81089e6i 0.270554 0.196569i
\(729\) 0 0
\(730\) −7.80627e6 + 2.40252e7i −0.542171 + 1.66863i
\(731\) −1.02936e7 7.47876e6i −0.712484 0.517650i
\(732\) 0 0
\(733\) −885952. + 2.72668e6i −0.0609046 + 0.187445i −0.976880 0.213790i \(-0.931419\pi\)
0.915975 + 0.401235i \(0.131419\pi\)
\(734\) 4.56887e6 + 1.40615e7i 0.313018 + 0.963369i
\(735\) 0 0
\(736\) 2.42394e6 0.164940
\(737\) 1.08898e6 6.14210e6i 0.0738503 0.416532i
\(738\) 0 0
\(739\) −304632. + 221328.i −0.0205194 + 0.0149082i −0.597998 0.801498i \(-0.704037\pi\)
0.577478 + 0.816406i \(0.304037\pi\)
\(740\) −1.46456e6 4.50745e6i −0.0983167 0.302588i
\(741\) 0 0
\(742\) −1.70000e6 1.23512e6i −0.113355 0.0823569i
\(743\) 1.37323e7 + 9.97708e6i 0.912579 + 0.663028i 0.941666 0.336549i \(-0.109260\pi\)
−0.0290867 + 0.999577i \(0.509260\pi\)
\(744\) 0 0
\(745\) −3.79888e6 1.16918e7i −0.250764 0.771772i
\(746\) 1.11235e7 8.08169e6i 0.731803 0.531686i
\(747\) 0 0
\(748\) 2.12879e7 + 4.37511e7i 1.39116 + 2.85914i
\(749\) 3.76422e6 0.245172
\(750\) 0 0
\(751\) −8.33469e6 2.56515e7i −0.539250 1.65964i −0.734283 0.678843i \(-0.762482\pi\)
0.195034 0.980797i \(-0.437518\pi\)
\(752\) 6.60834e6 2.03384e7i 0.426136 1.31151i
\(753\) 0 0
\(754\) 3.36930e7 + 2.44794e7i 2.15830 + 1.56810i
\(755\) 1.85051e6 5.69528e6i 0.118147 0.363620i
\(756\) 0 0
\(757\) 9.92063e6 7.20776e6i 0.629216 0.457152i −0.226913 0.973915i \(-0.572863\pi\)
0.856128 + 0.516763i \(0.172863\pi\)
\(758\) −2.75775e7 −1.74334
\(759\) 0 0
\(760\) −2.63460e7 −1.65455
\(761\) −1.38569e7 + 1.00676e7i −0.867371 + 0.630182i −0.929880 0.367862i \(-0.880090\pi\)
0.0625089 + 0.998044i \(0.480090\pi\)
\(762\) 0 0
\(763\) −1.26922e6 + 3.90625e6i −0.0789269 + 0.242912i
\(764\) 2.39551e7 + 1.74044e7i 1.48479 + 1.07876i
\(765\) 0 0
\(766\) 8.46482e6 2.60520e7i 0.521250 1.60424i
\(767\) 3.90297e6 + 1.20121e7i 0.239556 + 0.737277i
\(768\) 0 0
\(769\) −1.67008e7 −1.01841 −0.509203 0.860647i \(-0.670060\pi\)
−0.509203 + 0.860647i \(0.670060\pi\)
\(770\) 6.19214e6 + 3.29990e6i 0.376369 + 0.200574i
\(771\) 0 0
\(772\) 6.61615e6 4.80691e6i 0.399542 0.290284i
\(773\) 4.41732e6 + 1.35951e7i 0.265895 + 0.818341i 0.991486 + 0.130215i \(0.0415666\pi\)
−0.725591 + 0.688127i \(0.758433\pi\)
\(774\) 0 0
\(775\) 2.44267e6 + 1.77470e6i 0.146087 + 0.106138i
\(776\) 2.83755e7 + 2.06160e7i 1.69157 + 1.22899i
\(777\) 0 0
\(778\) 1.40170e7 + 4.31398e7i 0.830244 + 2.55523i
\(779\) 7.60829e6 5.52775e6i 0.449204 0.326366i
\(780\) 0 0
\(781\) −1.86732e7 + 1.79985e7i −1.09545 + 1.05587i
\(782\) −2.33934e7 −1.36797
\(783\) 0 0
\(784\) −3.46849e6 1.06749e7i −0.201535 0.620261i
\(785\) 1.47580e6 4.54205e6i 0.0854779 0.263074i
\(786\) 0 0
\(787\) −2.27948e7 1.65614e7i −1.31190 0.953148i −0.999995 0.00303342i \(-0.999034\pi\)
−0.311901 0.950115i \(-0.600966\pi\)
\(788\) 3.31042e6 1.01884e7i 0.189919 0.584510i
\(789\) 0 0
\(790\) −8.08101e6 + 5.87120e6i −0.460678 + 0.334702i
\(791\) −1.02833e6 −0.0584374
\(792\) 0 0
\(793\) 1.42371e7 0.803965
\(794\) 2.81587e7 2.04585e7i 1.58512 1.15165i
\(795\) 0 0
\(796\) 8.10630e6 2.49486e7i 0.453461 1.39561i
\(797\) 6.56832e6 + 4.77217e6i 0.366276 + 0.266115i 0.755665 0.654958i \(-0.227314\pi\)
−0.389389 + 0.921073i \(0.627314\pi\)
\(798\) 0 0
\(799\) 1.87058e7 5.75706e7i 1.03660 3.19032i
\(800\) 256434. + 789222.i 0.0141661 + 0.0435988i
\(801\) 0 0
\(802\) −3.35350e7 −1.84103
\(803\) −1.56262e7 8.32749e6i −0.855195 0.455749i
\(804\) 0 0
\(805\) −1.78586e6 + 1.29750e6i −0.0971309 + 0.0705698i
\(806\) 1.22942e7 + 3.78377e7i 0.666596 + 2.05157i
\(807\) 0 0
\(808\) 1.66656e7 + 1.21082e7i 0.898031 + 0.652458i
\(809\) 1.43065e7 + 1.03943e7i 0.768534 + 0.558372i 0.901516 0.432746i \(-0.142455\pi\)
−0.132982 + 0.991118i \(0.542455\pi\)
\(810\) 0 0
\(811\) 3.19470e6 + 9.83229e6i 0.170561 + 0.524931i 0.999403 0.0345508i \(-0.0110001\pi\)
−0.828842 + 0.559482i \(0.811000\pi\)
\(812\) −1.13737e7 + 8.26345e6i −0.605355 + 0.439816i
\(813\) 0 0
\(814\) 5.02813e6 701830.i 0.265978 0.0371254i
\(815\) −1.13551e6 −0.0598821
\(816\) 0 0
\(817\) 3.16336e6 + 9.73582e6i 0.165803 + 0.510290i
\(818\) −9.87646e6 + 3.03966e7i −0.516081 + 1.58833i
\(819\) 0 0
\(820\) 1.70313e7 + 1.23740e7i 0.884532 + 0.642650i
\(821\) 4.38222e6 1.34871e7i 0.226901 0.698330i −0.771192 0.636603i \(-0.780339\pi\)
0.998093 0.0617272i \(-0.0196609\pi\)
\(822\) 0 0
\(823\) −6.66919e6 + 4.84545e6i −0.343221 + 0.249364i −0.746019 0.665924i \(-0.768037\pi\)
0.402799 + 0.915289i \(0.368037\pi\)
\(824\) −1.44996e7 −0.743942
\(825\) 0 0
\(826\) −6.51583e6 −0.332292
\(827\) −375203. + 272601.i −0.0190767 + 0.0138600i −0.597283 0.802031i \(-0.703753\pi\)
0.578206 + 0.815891i \(0.303753\pi\)
\(828\) 0 0
\(829\) 1.05752e7 3.25472e7i 0.534445 1.64485i −0.210401 0.977615i \(-0.567477\pi\)
0.744846 0.667237i \(-0.232523\pi\)
\(830\) −5.50714e7 4.00117e7i −2.77480 2.01601i
\(831\) 0 0
\(832\) −7.36117e6 + 2.26553e7i −0.368670 + 1.13465i
\(833\) −9.81805e6 3.02168e7i −0.490244 1.50882i
\(834\) 0 0
\(835\) 2.61060e7 1.29576
\(836\) 6.83389e6 3.85446e7i 0.338183 1.90743i
\(837\) 0 0
\(838\) 3.96654e7 2.88186e7i 1.95120 1.41763i
\(839\) 2.19708e6 + 6.76193e6i 0.107756 + 0.331639i 0.990367 0.138464i \(-0.0442166\pi\)
−0.882611 + 0.470103i \(0.844217\pi\)
\(840\) 0 0
\(841\) −3.01325e7 2.18926e7i −1.46908 1.06735i
\(842\) 2.48981e7 + 1.80895e7i 1.21028 + 0.879320i
\(843\) 0 0
\(844\) −2.51822e6 7.75029e6i −0.121685 0.374508i
\(845\) 2.25825e6 1.64072e6i 0.108800 0.0790481i
\(846\) 0 0
\(847\) −3.03519e6 + 3.86982e6i −0.145371 + 0.185346i
\(848\) −5.05667e6 −0.241476
\(849\) 0 0
\(850\) −2.47483e6 7.61676e6i −0.117489 0.361595i
\(851\) −493565. + 1.51904e6i −0.0233626 + 0.0719026i
\(852\) 0 0
\(853\) 1.00383e7 + 7.29328e6i 0.472378 + 0.343203i 0.798367 0.602171i \(-0.205697\pi\)
−0.325989 + 0.945373i \(0.605697\pi\)
\(854\) −2.26965e6 + 6.98527e6i −0.106491 + 0.327747i
\(855\) 0 0
\(856\) 2.74193e7 1.99213e7i 1.27900 0.929251i
\(857\) 9.60549e6 0.446753 0.223376 0.974732i \(-0.428292\pi\)
0.223376 + 0.974732i \(0.428292\pi\)
\(858\) 0 0
\(859\) 1.35157e7 0.624964 0.312482 0.949924i \(-0.398840\pi\)
0.312482 + 0.949924i \(0.398840\pi\)
\(860\) −1.85389e7 + 1.34693e7i −0.854749 + 0.621012i
\(861\) 0 0
\(862\) −4.87161e6 + 1.49933e7i −0.223308 + 0.687272i
\(863\) 2.75417e7 + 2.00102e7i 1.25882 + 0.914588i 0.998699 0.0509875i \(-0.0162369\pi\)
0.260123 + 0.965575i \(0.416237\pi\)
\(864\) 0 0
\(865\) −7.45685e6 + 2.29498e7i −0.338856 + 1.04289i
\(866\) 669356. + 2.06007e6i 0.0303293 + 0.0933440i
\(867\) 0 0
\(868\) −1.34301e7 −0.605033
\(869\) −3.06327e6 6.29568e6i −0.137606 0.282809i
\(870\) 0 0
\(871\) −7.16215e6 + 5.20361e6i −0.319888 + 0.232412i
\(872\) 1.14277e7 + 3.51710e7i 0.508943 + 1.56636i
\(873\) 0 0
\(874\) 1.52267e7 + 1.10628e7i 0.674258 + 0.489877i
\(875\) 3.98270e6 + 2.89360e6i 0.175856 + 0.127767i
\(876\) 0 0
\(877\) −1.19668e6 3.68301e6i −0.0525387 0.161698i 0.921344 0.388747i \(-0.127092\pi\)
−0.973883 + 0.227050i \(0.927092\pi\)
\(878\) 930065. 675732.i 0.0407171 0.0295827i
\(879\) 0 0
\(880\) 1.67227e7 2.33417e6i 0.727948 0.101607i
\(881\) −2.91447e7 −1.26509 −0.632543 0.774525i \(-0.717989\pi\)
−0.632543 + 0.774525i \(0.717989\pi\)
\(882\) 0 0
\(883\) 1.18195e7 + 3.63765e7i 0.510147 + 1.57007i 0.791941 + 0.610597i \(0.209070\pi\)
−0.281794 + 0.959475i \(0.590930\pi\)
\(884\) 2.13383e7 6.56726e7i 0.918395 2.82653i
\(885\) 0 0
\(886\) 7.24196e6 + 5.26159e6i 0.309936 + 0.225182i
\(887\) 7.81116e6 2.40403e7i 0.333354 1.02596i −0.634172 0.773192i \(-0.718659\pi\)
0.967527 0.252768i \(-0.0813409\pi\)
\(888\) 0 0
\(889\) 5.79674e6 4.21158e6i 0.245997 0.178727i
\(890\) −3.78564e6 −0.160200
\(891\) 0 0
\(892\) −4.62092e7 −1.94454
\(893\) −3.94010e7 + 2.86265e7i −1.65340 + 1.20127i
\(894\) 0 0
\(895\) −6.68080e6 + 2.05614e7i −0.278786 + 0.858015i
\(896\) −8.36462e6 6.07725e6i −0.348078 0.252893i
\(897\) 0 0
\(898\) −2.02410e7 + 6.22955e7i −0.837610 + 2.57790i
\(899\) −1.70499e7 5.24743e7i −0.703596 2.16545i
\(900\) 0 0
\(901\) −1.43136e7 −0.587404
\(902\) −1.62365e7 + 1.56498e7i −0.664469 + 0.640463i
\(903\) 0 0
\(904\) −7.49054e6 + 5.44219e6i −0.304854 + 0.221489i
\(905\) −1.15134e7 3.54346e7i −0.467286 1.43816i
\(906\) 0 0
\(907\) 3.43290e7 + 2.49415e7i 1.38562 + 1.00671i 0.996330 + 0.0855944i \(0.0272789\pi\)
0.389288 + 0.921116i \(0.372721\pi\)
\(908\) −5.31593e6 3.86225e6i −0.213976 0.155462i
\(909\) 0 0
\(910\) −3.07719e6 9.47061e6i −0.123183 0.379118i
\(911\) −3.70665e6 + 2.69304e6i −0.147974 + 0.107509i −0.659309 0.751872i \(-0.729151\pi\)
0.511335 + 0.859381i \(0.329151\pi\)
\(912\) 0 0
\(913\) 3.43537e7 3.31125e7i 1.36394 1.31466i
\(914\) 8.01344e7 3.17288
\(915\) 0 0
\(916\) −9.79226e6 3.01375e7i −0.385606 1.18677i
\(917\) −1.93284e6 + 5.94868e6i −0.0759056 + 0.233613i
\(918\) 0 0
\(919\) −1.49737e7 1.08790e7i −0.584843 0.424913i 0.255624 0.966776i \(-0.417719\pi\)
−0.840467 + 0.541863i \(0.817719\pi\)
\(920\) −6.14180e6 + 1.89025e7i −0.239236 + 0.736292i
\(921\) 0 0
\(922\) 1.28121e6 930857.i 0.0496357 0.0360625i
\(923\) 3.68076e7 1.42211
\(924\) 0 0
\(925\) −546806. −0.0210126
\(926\) −1.89346e6 + 1.37568e6i −0.0725651 + 0.0527216i
\(927\) 0 0
\(928\) 4.68607e6 1.44222e7i 0.178623 0.549746i
\(929\) 3.39555e7 + 2.46701e7i 1.29084 + 0.937847i 0.999822 0.0188716i \(-0.00600739\pi\)
0.291014 + 0.956719i \(0.406007\pi\)
\(930\) 0 0
\(931\) −7.89914e6 + 2.43111e7i −0.298680 + 0.919242i
\(932\) −4.10620e6 1.26376e7i −0.154846 0.476567i
\(933\) 0 0
\(934\) 3.13993e7 1.17775
\(935\) 4.73360e7 6.60719e6i 1.77077 0.247166i
\(936\) 0 0
\(937\) −6.05508e6 + 4.39927e6i −0.225305 + 0.163694i −0.694711 0.719289i \(-0.744468\pi\)
0.469406 + 0.882982i \(0.344468\pi\)
\(938\) −1.41132e6 4.34359e6i −0.0523742 0.161191i
\(939\) 0 0
\(940\) −8.81999e7 6.40810e7i −3.25573 2.36543i
\(941\) −3.34949e7 2.43355e7i −1.23312 0.895912i −0.235998 0.971754i \(-0.575836\pi\)
−0.997120 + 0.0758412i \(0.975836\pi\)
\(942\) 0 0
\(943\) −2.19236e6 6.74738e6i −0.0802845 0.247090i
\(944\) −1.26853e7 + 9.21641e6i −0.463309 + 0.336614i
\(945\) 0 0
\(946\) −1.07399e7 2.20729e7i −0.390188 0.801920i
\(947\) 4.38933e7 1.59046 0.795231 0.606307i \(-0.207350\pi\)
0.795231 + 0.606307i \(0.207350\pi\)
\(948\) 0 0
\(949\) 7.76545e6 + 2.38996e7i 0.279899 + 0.861440i
\(950\) −1.99114e6 + 6.12809e6i −0.0715800 + 0.220301i
\(951\) 0 0
\(952\) 1.35956e7 + 9.87776e6i 0.486189 + 0.353237i
\(953\) −872998. + 2.68681e6i −0.0311373 + 0.0958308i −0.965417 0.260709i \(-0.916044\pi\)
0.934280 + 0.356540i \(0.116044\pi\)
\(954\) 0 0
\(955\) 2.35315e7 1.70966e7i 0.834912 0.606599i
\(956\) −2.92314e7 −1.03444
\(957\) 0 0
\(958\) −1.43340e7 −0.504609
\(959\) −1.19143e6 + 865625.i −0.0418333 + 0.0303937i
\(960\) 0 0
\(961\) 7.44076e6 2.29003e7i 0.259901 0.799894i
\(962\) −5.82910e6 4.23509e6i −0.203079 0.147545i
\(963\) 0 0
\(964\) −8.83975e6 + 2.72059e7i −0.306371 + 0.942912i
\(965\) −2.48245e6 7.64021e6i −0.0858150 0.264111i
\(966\) 0 0
\(967\) −1.10642e7 −0.380499 −0.190249 0.981736i \(-0.560930\pi\)
−0.190249 + 0.981736i \(0.560930\pi\)
\(968\) −1.62875e6 + 4.42516e7i −0.0558682 + 1.51789i
\(969\) 0 0
\(970\) 5.90867e7 4.29290e7i 2.01632 1.46494i
\(971\) 4.55825e6 + 1.40289e7i 0.155149 + 0.477501i 0.998176 0.0603711i \(-0.0192284\pi\)
−0.843027 + 0.537872i \(0.819228\pi\)
\(972\) 0 0
\(973\) −2.89459e6 2.10305e6i −0.0980179 0.0712142i
\(974\) −3.91456e7 2.84409e7i −1.32216 0.960608i
\(975\) 0 0
\(976\) 5.46176e6 + 1.68096e7i 0.183530 + 0.564848i
\(977\) −1.50923e7 + 1.09652e7i −0.505848 + 0.367520i −0.811246 0.584705i \(-0.801210\pi\)
0.305398 + 0.952225i \(0.401210\pi\)
\(978\) 0 0
\(979\) 463231. 2.61272e6i 0.0154469 0.0871238i
\(980\) −5.72214e7 −1.90324
\(981\) 0 0
\(982\) −1.32399e7 4.07481e7i −0.438132 1.34843i
\(983\) −4.42126e6 + 1.36072e7i −0.145936 + 0.449144i −0.997130 0.0757064i \(-0.975879\pi\)
0.851194 + 0.524851i \(0.175879\pi\)
\(984\) 0 0
\(985\) −8.51354e6 6.18545e6i −0.279589 0.203133i
\(986\) −4.52251e7 + 1.39188e8i −1.48145 + 4.55943i
\(987\) 0 0
\(988\) −4.49459e7 + 3.26551e7i −1.46487 + 1.06429i
\(989\) 7.72263e6 0.251058
\(990\) 0 0
\(991\) 3.51472e7 1.13686 0.568429 0.822732i \(-0.307551\pi\)
0.568429 + 0.822732i \(0.307551\pi\)
\(992\) 1.17198e7 8.51492e6i 0.378129 0.274727i
\(993\) 0 0
\(994\) −5.86782e6 + 1.80593e7i −0.188370 + 0.579742i
\(995\) −2.08473e7 1.51464e7i −0.667562 0.485012i
\(996\) 0 0
\(997\) 4.13366e6 1.27221e7i 0.131703 0.405341i −0.863359 0.504589i \(-0.831644\pi\)
0.995063 + 0.0992486i \(0.0316439\pi\)
\(998\) 2.31169e7 + 7.11466e7i 0.734689 + 2.26114i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.6.f.b.91.5 20
3.2 odd 2 33.6.e.b.25.1 yes 20
11.2 odd 10 1089.6.a.bi.1.10 10
11.4 even 5 inner 99.6.f.b.37.5 20
11.9 even 5 1089.6.a.bk.1.1 10
33.2 even 10 363.6.a.t.1.1 10
33.20 odd 10 363.6.a.r.1.10 10
33.26 odd 10 33.6.e.b.4.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.6.e.b.4.1 20 33.26 odd 10
33.6.e.b.25.1 yes 20 3.2 odd 2
99.6.f.b.37.5 20 11.4 even 5 inner
99.6.f.b.91.5 20 1.1 even 1 trivial
363.6.a.r.1.10 10 33.20 odd 10
363.6.a.t.1.1 10 33.2 even 10
1089.6.a.bi.1.10 10 11.2 odd 10
1089.6.a.bk.1.1 10 11.9 even 5