Properties

Label 48.48
Order \( 2^{4} \cdot 3 \)
Exponent \( 2^{2} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ \( 2 \)
$\card{\mathrm{Aut}(G)}$ \( 2^{4} \cdot 3 \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $6$
Trans deg. $6$
Rank $2$

Related objects

Downloads

Learn more

Group information

Description:$C_2\times S_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism group:$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) (generators)
Outer automorphisms:$C_2$, of order \(2\)
Composition factors:$C_2$ x 4, $C_3$
Derived length:$3$

This group is nonabelian, monomial (hence solvable), and rational.

Group statistics

Order 1 2 3 4 6
Elements 1 19 8 12 8 48
Conjugacy classes   1 5 1 2 1 10
Divisions 1 5 1 2 1 10
Autjugacy classes 1 4 1 1 1 8

Dimension 1 2 3
Irr. complex chars.   4 2 4 10
Irr. rational chars. 4 2 4 10

Minimal Presentations

Permutation degree:$6$
Transitive degree:$6$
Rank: $2$
Inequivalent generating pairs: $9$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 3 3 3
Arbitrary 3 3 3

Constructions

Groups of Lie type:$\GO(3,3)$, $\CO(3,3)$
Presentation: $\langle a, b, c, d \mid a^{2}=b^{6}=c^{2}=d^{2}=[c,d]=1, b^{a}=b^{5}, c^{a}=d, d^{a}=c, c^{b}=d, d^{b}=cd \rangle$ Copy content Toggle raw display
Permutation group: $\langle(1,2)(3,6)(4,5), (1,2)(3,4)(5,6), (1,5,3)(2,6,4), (1,2)(3,4), (1,2)(5,6)\rangle$ Copy content Toggle raw display
Matrix group:$\left\langle \left(\begin{array}{rrr} -1 & 1 & -1 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrr} 1 & -1 & 1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{array}\right) \right\rangle \subseteq \GL_{3}(\Z)$
$\left\langle \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{array}\right), \left(\begin{array}{rrr} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 1 & 2 & 2 \end{array}\right), \left(\begin{array}{rrr} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array}\right), \left(\begin{array}{rrr} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right), \left(\begin{array}{rrr} 1 & 0 & 2 \\ 2 & 2 & 2 \\ 0 & 0 & 2 \end{array}\right) \right\rangle \subseteq \GL_{3}(\F_{3})$
Transitive group: 6T11 8T24 12T21 12T22 all 10
Direct product: $C_2$ $\, \times\, $ $S_4$
Semidirect product: $C_2^3$ $\,\rtimes\,$ $S_3$ $A_4$ $\,\rtimes\,$ $C_2^2$ $C_2^2$ $\,\rtimes\,$ $D_6$ $(C_2\times A_4)$ $\,\rtimes\,$ $C_2$ more information
Trans. wreath product: $C_2$$\ \wr\ $$S_3$
Aut. group: $\Aut(D_4:C_2)$ $\Aut(C_3\times Q_8)$ $\Aut(C_2.S_4)$ $\Aut(\GL(2,3))$ all 9

Elements of the group are displayed as permutations of degree 6.

Homology

Abelianization: $C_{2}^{2} $
Schur multiplier: $C_{2}^{2}$
Commutator length: $1$

Subgroups

There are 98 subgroups in 33 conjugacy classes, 9 normal (7 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $S_4$
Commutator: $G' \simeq$ $A_4$ $G/G' \simeq$ $C_2^2$
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_2\times S_4$
Fitting: $\operatorname{Fit} \simeq$ $C_2^3$ $G/\operatorname{Fit} \simeq$ $S_3$
Radical: $R \simeq$ $C_2\times S_4$ $G/R \simeq$ $C_1$
Socle: $\operatorname{soc} \simeq$ $C_2^3$ $G/\operatorname{soc} \simeq$ $S_3$
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2\times D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $C_2\times S_4$ $\rhd$ $A_4$ $\rhd$ $C_2^2$ $\rhd$ $C_1$
Chief series $C_2\times S_4$ $\rhd$ $C_2\times A_4$ $\rhd$ $A_4$ $\rhd$ $C_2^2$ $\rhd$ $C_1$
Lower central series $C_2\times S_4$ $\rhd$ $A_4$
Upper central series $C_1$ $\lhd$ $C_2$

Supergroups

This group is a maximal subgroup of 73 larger groups in the database.

This group is a maximal quotient of 192 larger groups in the database.

Character theory

Complex character table

Every character has rational values, so the complex character table is the same as the rational character table below.

Rational character table

1A 2A 2B 2C 2D 2E 3A 4A 4B 6A
Size 1 1 3 3 6 6 8 6 6 8
2 P 1A 1A 1A 1A 1A 1A 3A 2C 2C 3A
3 P 1A 2A 2B 2C 2D 2E 1A 4A 4B 2A
48.48.1a 1 1 1 1 1 1 1 1 1 1
48.48.1b 1 1 1 1 1 1 1 1 1 1
48.48.1c 1 1 1 1 1 1 1 1 1 1
48.48.1d 1 1 1 1 1 1 1 1 1 1
48.48.2a 2 2 2 2 0 0 1 0 0 1
48.48.2b 2 2 2 2 0 0 1 0 0 1
48.48.3a 3 3 1 1 1 1 0 1 1 0
48.48.3b 3 3 1 1 1 1 0 1 1 0
48.48.3c 3 3 1 1 1 1 0 1 1 0
48.48.3d 3 3 1 1 1 1 0 1 1 0