Properties

Label 4-1-1.1-r0e4-m1.97p5.10p15.91m19.04-0
Degree 44
Conductor 11
Sign 11
Analytic cond. 1.917981.91798
Root an. cond. 1.176821.17682
Arithmetic no
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Related objects

Downloads

Learn more

Dirichlet series

L(s)  = 1  + (0.340 − 0.484i)2-s + (0.0264 − 0.577i)3-s + (−0.790 − 0.329i)4-s + (1.16 + 0.105i)5-s + (−0.270 − 0.209i)6-s + (0.165 − 0.0772i)7-s + (−0.316 + 1.08i)8-s + (−0.536 − 0.0305i)9-s + (0.447 − 0.528i)10-s + (−0.442 − 0.761i)11-s + (−0.211 + 0.448i)12-s + (0.756 + 0.0103i)13-s + (0.0188 − 0.106i)14-s + (0.0917 − 0.671i)15-s + (0.296 + 0.742i)16-s + (−0.200 + 0.739i)17-s + ⋯

Functional equation

Λ(s)=(ΓR(s19.0i)ΓR(s1.97i)ΓR(s+5.10i)ΓR(s+15.9i)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\Gamma_{\R}(s-19.0i) \, \Gamma_{\R}(s-1.97i) \, \Gamma_{\R}(s+5.10i) \, \Gamma_{\R}(s+15.9i) \, L(s)\cr=\mathstrut & \,\overline{\Lambda}(1-s)\end{aligned}

Invariants

Degree: 44
Conductor: 11
Sign: 11
Analytic conductor: 1.917981.91798
Root analytic conductor: 1.176821.17682
Rational: no
Arithmetic: no
Primitive: yes
Self-dual: no
Selberg data: (4, 1, (19.03767623312i,1.972435011632i,5.10355437536i,15.9065568694i: ), 1)(4,\ 1,\ (-19.03767623312i, -1.972435011632i, 5.10355437536i, 15.9065568694i:\ ),\ 1)

Euler product

L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−23.20477758, −22.06186511, −20.90486526, −17.99614909, −13.51432196, −9.56782573, 5.68994723, 8.76421280, 10.91443624, 13.20797304, 14.09560366, 17.62720365, 21.16901722, 22.76927297, 24.08379404

Graph of the ZZ-function along the critical line