L(s) = 1 | + (0.340 − 0.484i)2-s + (0.0264 − 0.577i)3-s + (−0.790 − 0.329i)4-s + (1.16 + 0.105i)5-s + (−0.270 − 0.209i)6-s + (0.165 − 0.0772i)7-s + (−0.316 + 1.08i)8-s + (−0.536 − 0.0305i)9-s + (0.447 − 0.528i)10-s + (−0.442 − 0.761i)11-s + (−0.211 + 0.448i)12-s + (0.756 + 0.0103i)13-s + (0.0188 − 0.106i)14-s + (0.0917 − 0.671i)15-s + (0.296 + 0.742i)16-s + (−0.200 + 0.739i)17-s + ⋯ |
Λ(s)=(=(ΓR(s−19.0i)ΓR(s−1.97i)ΓR(s+5.10i)ΓR(s+15.9i)L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1
|
Sign: |
1
|
Analytic conductor: |
1.91798 |
Root analytic conductor: |
1.17682 |
Rational: |
no |
Arithmetic: |
no |
Primitive: |
yes
|
Self-dual: |
no
|
Selberg data: |
(4, 1, (−19.03767623312i,−1.972435011632i,5.10355437536i,15.9065568694i: ), 1)
|
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−23.20477758, −22.06186511, −20.90486526, −17.99614909, −13.51432196, −9.56782573,
5.68994723, 8.76421280, 10.91443624, 13.20797304, 14.09560366, 17.62720365, 21.16901722, 22.76927297, 24.08379404