L(s) = 1 | + (0.340 + 0.484i)2-s + (0.0264 + 0.577i)3-s + (−0.790 + 0.329i)4-s + (1.16 − 0.105i)5-s + (−0.270 + 0.209i)6-s + (0.165 + 0.0772i)7-s + (−0.316 − 1.08i)8-s + (−0.536 + 0.0305i)9-s + (0.447 + 0.528i)10-s + (−0.442 + 0.761i)11-s + (−0.211 − 0.448i)12-s + (0.756 − 0.0103i)13-s + (0.0188 + 0.106i)14-s + (0.0917 + 0.671i)15-s + (0.296 − 0.742i)16-s + (−0.200 − 0.739i)17-s + ⋯ |
Λ(s)=(=(ΓR(s+19.0i)ΓR(s+1.97i)ΓR(s−5.10i)ΓR(s−15.9i)L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1
|
Sign: |
1
|
Analytic conductor: |
1.91798 |
Root analytic conductor: |
1.17682 |
Rational: |
no |
Arithmetic: |
no |
Primitive: |
yes
|
Self-dual: |
no
|
Selberg data: |
(4, 1, (19.03767623312i,1.972435011632i,−5.10355437536i,−15.9065568694i: ), 1)
|
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−24.08379404, −22.76927297, −21.16901722, −17.62720365, −14.09560366, −13.20797304, −10.91443624, −8.76421280, −5.68994723,
9.56782573, 13.51432196, 17.99614909, 20.90486526, 22.06186511, 23.20477758