Properties

Label 4-1-1.1-r0e4-p1.97m5.10m15.91p19.04-0
Degree 44
Conductor 11
Sign 11
Analytic cond. 1.917981.91798
Root an. cond. 1.176821.17682
Arithmetic no
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Related objects

Downloads

Learn more

Dirichlet series

L(s)  = 1  + (0.340 + 0.484i)2-s + (0.0264 + 0.577i)3-s + (−0.790 + 0.329i)4-s + (1.16 − 0.105i)5-s + (−0.270 + 0.209i)6-s + (0.165 + 0.0772i)7-s + (−0.316 − 1.08i)8-s + (−0.536 + 0.0305i)9-s + (0.447 + 0.528i)10-s + (−0.442 + 0.761i)11-s + (−0.211 − 0.448i)12-s + (0.756 − 0.0103i)13-s + (0.0188 + 0.106i)14-s + (0.0917 + 0.671i)15-s + (0.296 − 0.742i)16-s + (−0.200 − 0.739i)17-s + ⋯

Functional equation

Λ(s)=(ΓR(s+19.0i)ΓR(s+1.97i)ΓR(s5.10i)ΓR(s15.9i)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\Gamma_{\R}(s+19.0i) \, \Gamma_{\R}(s+1.97i) \, \Gamma_{\R}(s-5.10i) \, \Gamma_{\R}(s-15.9i) \, L(s)\cr=\mathstrut & \,\overline{\Lambda}(1-s)\end{aligned}

Invariants

Degree: 44
Conductor: 11
Sign: 11
Analytic conductor: 1.917981.91798
Root analytic conductor: 1.176821.17682
Rational: no
Arithmetic: no
Primitive: yes
Self-dual: no
Selberg data: (4, 1, (19.03767623312i,1.972435011632i,5.10355437536i,15.9065568694i: ), 1)(4,\ 1,\ (19.03767623312i, 1.972435011632i, -5.10355437536i, -15.9065568694i:\ ),\ 1)

Euler product

L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−24.08379404, −22.76927297, −21.16901722, −17.62720365, −14.09560366, −13.20797304, −10.91443624, −8.76421280, −5.68994723, 9.56782573, 13.51432196, 17.99614909, 20.90486526, 22.06186511, 23.20477758

Graph of the ZZ-function along the critical line