Properties

Label 1.112531.2t1.a.a
Dimension 11
Group C2C_2
Conductor 112531112531
Root number 11
Indicator 11

Related objects

Downloads

Learn more

Basic invariants

Dimension: 11
Group: C2C_2
Conductor: 112531112531=432617\medspace = 43 \cdot 2617
Frobenius-Schur indicator: 11
Root number: 11
Artin field: Galois closure of Q(112531)\Q(\sqrt{-112531})
Galois orbit size: 11
Smallest permutation container: C2C_2
Parity: odd
Dirichlet character: (112531)\displaystyle\left(\frac{-112531}{\bullet}\right)
Projective image: C1C_1
Projective field: Galois closure of Q\Q

Defining polynomial

f(x)f(x)== x2x+28133 x^{2} - x + 28133 Copy content Toggle raw display .

The roots of ff are computed in Q5\Q_{ 5 } to precision 5.

Roots:
r1r_{ 1 } == 2+5+52+453+54+O(55) 2 + 5 + 5^{2} + 4\cdot 5^{3} + 5^{4} +O(5^{5}) Copy content Toggle raw display
r2r_{ 2 } == 4+35+352+354+O(55) 4 + 3\cdot 5 + 3\cdot 5^{2} + 3\cdot 5^{4} +O(5^{5}) Copy content Toggle raw display

Generators of the action on the roots r1,r2 r_{ 1 }, r_{ 2 }

Cycle notation
(1,2)(1,2)

Character values on conjugacy classes

SizeOrderAction on r1,r2 r_{ 1 }, r_{ 2 } Character valueComplex conjugation
1111()()11
1122(1,2)(1,2)1-1