Properties

Label 1.19109.2t1.a
Dimension 11
Group C2C_2
Conductor 1910919109
Indicator 11

Related objects

Downloads

Learn more

Basic invariants

Dimension:11
Group:C2C_2
Conductor:1910919109=97197\medspace = 97 \cdot 197
Frobenius-Schur indicator: 11
Root number: 11
Artin number field: Galois closure of Q(19109)\Q(\sqrt{19109})
Galois orbit size: 11
Smallest permutation container: C2C_2
Parity: even
Projective image: C1C_1
Projective field: Galois closure of Q\Q

Galois action

Roots of defining polynomial

The roots of ff are computed in Q5\Q_{ 5 } to precision 5.
Roots:
r1r_{ 1 } == 2+252+453+254+O(55) 2 + 2\cdot 5^{2} + 4\cdot 5^{3} + 2\cdot 5^{4} +O(5^{5}) Copy content Toggle raw display
r2r_{ 2 } == 4+45+252+254+O(55) 4 + 4\cdot 5 + 2\cdot 5^{2} + 2\cdot 5^{4} +O(5^{5}) Copy content Toggle raw display

Generators of the action on the roots r1,r2 r_{ 1 }, r_{ 2 }

Cycle notation
(1,2)(1,2)

Character values on conjugacy classes

SizeOrderAction on r1,r2 r_{ 1 }, r_{ 2 } Character values
c1c1
11 11 ()() 11
11 22 (1,2)(1,2) 1-1
The blue line marks the conjugacy class containing complex conjugation.