Properties

Label 1.247.6t1.b.a
Dimension 11
Group C6C_6
Conductor 247247
Root number not computed
Indicator 00

Related objects

Downloads

Learn more

Basic invariants

Dimension: 11
Group: C6C_6
Conductor: 247247=1319\medspace = 13 \cdot 19
Artin field: Galois closure of 6.6.286315237.1
Galois orbit size: 22
Smallest permutation container: C6C_6
Parity: even
Dirichlet character: χ247(64,)\chi_{247}(64,\cdot)
Projective image: C1C_1
Projective field: Galois closure of Q\Q

Defining polynomial

f(x)f(x)== x6x522x4+5x3+73x258x+1 x^{6} - x^{5} - 22x^{4} + 5x^{3} + 73x^{2} - 58x + 1 Copy content Toggle raw display .

The roots of ff are computed in an extension of Q11\Q_{ 11 } to precision 5.

Minimal polynomial of a generator aa of KK over Q11\mathbb{Q}_{ 11 }: x2+7x+2 x^{2} + 7x + 2 Copy content Toggle raw display

Roots:
r1r_{ 1 } == 6a+6+(4a+9)11+10112+5113+6a114+O(115) 6 a + 6 + \left(4 a + 9\right)\cdot 11 + 10\cdot 11^{2} + 5\cdot 11^{3} + 6 a\cdot 11^{4} +O(11^{5}) Copy content Toggle raw display
r2r_{ 2 } == 5a+8+(6a+10)11+(10a+7)112+(10a+5)113+(4a+2)114+O(115) 5 a + 8 + \left(6 a + 10\right)\cdot 11 + \left(10 a + 7\right)\cdot 11^{2} + \left(10 a + 5\right)\cdot 11^{3} + \left(4 a + 2\right)\cdot 11^{4} +O(11^{5}) Copy content Toggle raw display
r3r_{ 3 } == 6a+8+(4a+1)11+9112+113+(6a+8)114+O(115) 6 a + 8 + \left(4 a + 1\right)\cdot 11 + 9\cdot 11^{2} + 11^{3} + \left(6 a + 8\right)\cdot 11^{4} +O(11^{5}) Copy content Toggle raw display
r4r_{ 4 } == 5a+10+(6a+2)11+(10a+6)112+(10a+1)113+(4a+10)114+O(115) 5 a + 10 + \left(6 a + 2\right)\cdot 11 + \left(10 a + 6\right)\cdot 11^{2} + \left(10 a + 1\right)\cdot 11^{3} + \left(4 a + 10\right)\cdot 11^{4} +O(11^{5}) Copy content Toggle raw display
r5r_{ 5 } == 6a+(4a+9)11+9113+(6a+4)114+O(115) 6 a + \left(4 a + 9\right)\cdot 11 + 9\cdot 11^{3} + \left(6 a + 4\right)\cdot 11^{4} +O(11^{5}) Copy content Toggle raw display
r6r_{ 6 } == 5a+2+(6a+10)11+(10a+8)112+(10a+8)113+(4a+6)114+O(115) 5 a + 2 + \left(6 a + 10\right)\cdot 11 + \left(10 a + 8\right)\cdot 11^{2} + \left(10 a + 8\right)\cdot 11^{3} + \left(4 a + 6\right)\cdot 11^{4} +O(11^{5}) Copy content Toggle raw display

Generators of the action on the roots r1,,r6r_1, \ldots, r_{ 6 }

Cycle notation
(1,2)(3,4)(5,6)(1,2)(3,4)(5,6)
(1,3,5)(2,4,6)(1,3,5)(2,4,6)

Character values on conjugacy classes

SizeOrderAction on r1,,r6r_1, \ldots, r_{ 6 } Character valueComplex conjugation
1111()()11
1122(1,2)(3,4)(5,6)(1,2)(3,4)(5,6)1-1
1133(1,3,5)(2,4,6)(1,3,5)(2,4,6)ζ3\zeta_{3}
1133(1,5,3)(2,6,4)(1,5,3)(2,6,4)ζ31-\zeta_{3} - 1
1166(1,4,5,2,3,6)(1,4,5,2,3,6)ζ3-\zeta_{3}
1166(1,6,3,2,5,4)(1,6,3,2,5,4)ζ3+1\zeta_{3} + 1