Basic invariants
Dimension: | $1$ |
Group: | $C_6$ |
Conductor: | \(247\)\(\medspace = 13 \cdot 19 \) |
Artin field: | Galois closure of 6.6.286315237.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_6$ |
Parity: | even |
Dirichlet character: | \(\chi_{247}(64,\cdot)\) |
Projective image: | $C_1$ |
Projective field: | Galois closure of \(\Q\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{6} - x^{5} - 22x^{4} + 5x^{3} + 73x^{2} - 58x + 1 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: \( x^{2} + 7x + 2 \)
Roots:
$r_{ 1 }$ | $=$ | \( 6 a + 6 + \left(4 a + 9\right)\cdot 11 + 10\cdot 11^{2} + 5\cdot 11^{3} + 6 a\cdot 11^{4} +O(11^{5})\) |
$r_{ 2 }$ | $=$ | \( 5 a + 8 + \left(6 a + 10\right)\cdot 11 + \left(10 a + 7\right)\cdot 11^{2} + \left(10 a + 5\right)\cdot 11^{3} + \left(4 a + 2\right)\cdot 11^{4} +O(11^{5})\) |
$r_{ 3 }$ | $=$ | \( 6 a + 8 + \left(4 a + 1\right)\cdot 11 + 9\cdot 11^{2} + 11^{3} + \left(6 a + 8\right)\cdot 11^{4} +O(11^{5})\) |
$r_{ 4 }$ | $=$ | \( 5 a + 10 + \left(6 a + 2\right)\cdot 11 + \left(10 a + 6\right)\cdot 11^{2} + \left(10 a + 1\right)\cdot 11^{3} + \left(4 a + 10\right)\cdot 11^{4} +O(11^{5})\) |
$r_{ 5 }$ | $=$ | \( 6 a + \left(4 a + 9\right)\cdot 11 + 9\cdot 11^{3} + \left(6 a + 4\right)\cdot 11^{4} +O(11^{5})\) |
$r_{ 6 }$ | $=$ | \( 5 a + 2 + \left(6 a + 10\right)\cdot 11 + \left(10 a + 8\right)\cdot 11^{2} + \left(10 a + 8\right)\cdot 11^{3} + \left(4 a + 6\right)\cdot 11^{4} +O(11^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $1$ | ✓ |
$1$ | $2$ | $(1,2)(3,4)(5,6)$ | $-1$ | |
$1$ | $3$ | $(1,3,5)(2,4,6)$ | $\zeta_{3}$ | |
$1$ | $3$ | $(1,5,3)(2,6,4)$ | $-\zeta_{3} - 1$ | |
$1$ | $6$ | $(1,4,5,2,3,6)$ | $-\zeta_{3}$ | |
$1$ | $6$ | $(1,6,3,2,5,4)$ | $\zeta_{3} + 1$ |