Properties

Label 1.247.6t1.b.a
Dimension $1$
Group $C_6$
Conductor $247$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_6$
Conductor: \(247\)\(\medspace = 13 \cdot 19 \)
Artin field: Galois closure of 6.6.286315237.1
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: even
Dirichlet character: \(\chi_{247}(64,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{6} - x^{5} - 22x^{4} + 5x^{3} + 73x^{2} - 58x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: \( x^{2} + 7x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 6 a + 6 + \left(4 a + 9\right)\cdot 11 + 10\cdot 11^{2} + 5\cdot 11^{3} + 6 a\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 5 a + 8 + \left(6 a + 10\right)\cdot 11 + \left(10 a + 7\right)\cdot 11^{2} + \left(10 a + 5\right)\cdot 11^{3} + \left(4 a + 2\right)\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 6 a + 8 + \left(4 a + 1\right)\cdot 11 + 9\cdot 11^{2} + 11^{3} + \left(6 a + 8\right)\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 5 a + 10 + \left(6 a + 2\right)\cdot 11 + \left(10 a + 6\right)\cdot 11^{2} + \left(10 a + 1\right)\cdot 11^{3} + \left(4 a + 10\right)\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 6 a + \left(4 a + 9\right)\cdot 11 + 9\cdot 11^{3} + \left(6 a + 4\right)\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 5 a + 2 + \left(6 a + 10\right)\cdot 11 + \left(10 a + 8\right)\cdot 11^{2} + \left(10 a + 8\right)\cdot 11^{3} + \left(4 a + 6\right)\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(1,3,5)(2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$1$
$1$$2$$(1,2)(3,4)(5,6)$$-1$
$1$$3$$(1,3,5)(2,4,6)$$\zeta_{3}$
$1$$3$$(1,5,3)(2,6,4)$$-\zeta_{3} - 1$
$1$$6$$(1,4,5,2,3,6)$$-\zeta_{3}$
$1$$6$$(1,6,3,2,5,4)$$\zeta_{3} + 1$