Properties

Label 1.252.6t1.i.a
Dimension $1$
Group $C_6$
Conductor $252$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_6$
Conductor: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Artin field: Galois closure of 6.6.144027072.1
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: even
Dirichlet character: \(\chi_{252}(139,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{6} - 27x^{4} - 2x^{3} + 156x^{2} - 36x - 111 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: \( x^{2} + 16x + 3 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 4 a + 1 + \left(8 a + 10\right)\cdot 17 + \left(8 a + 14\right)\cdot 17^{2} + \left(14 a + 11\right)\cdot 17^{3} + \left(16 a + 3\right)\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 13 a + 6 + \left(8 a + 11\right)\cdot 17 + \left(8 a + 13\right)\cdot 17^{2} + \left(2 a + 13\right)\cdot 17^{3} + 16\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 13 a + 12 + \left(8 a + 14\right)\cdot 17 + \left(8 a + 5\right)\cdot 17^{2} + \left(2 a + 11\right)\cdot 17^{3} + 14\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 4 a + 8 + \left(8 a + 10\right)\cdot 17 + \left(8 a + 5\right)\cdot 17^{2} + \left(14 a + 5\right)\cdot 17^{3} + \left(16 a + 12\right)\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 13 a + 5 + \left(8 a + 14\right)\cdot 17 + \left(8 a + 14\right)\cdot 17^{2} + 2 a\cdot 17^{3} + 6\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 4 a + 2 + \left(8 a + 7\right)\cdot 17 + \left(8 a + 13\right)\cdot 17^{2} + \left(14 a + 7\right)\cdot 17^{3} + \left(16 a + 14\right)\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)(3,4)$
$(1,2,4,5,6,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,5)(2,6)(3,4)$$-1$
$1$$3$$(1,4,6)(2,5,3)$$\zeta_{3}$
$1$$3$$(1,6,4)(2,3,5)$$-\zeta_{3} - 1$
$1$$6$$(1,2,4,5,6,3)$$\zeta_{3} + 1$
$1$$6$$(1,3,6,5,4,2)$$-\zeta_{3}$

The blue line marks the conjugacy class containing complex conjugation.