Basic invariants
Dimension: | $1$ |
Group: | $C_6$ |
Conductor: | \(296\)\(\medspace = 2^{3} \cdot 37 \) |
Artin field: | Galois closure of 6.6.35504105984.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_6$ |
Parity: | even |
Dirichlet character: | \(\chi_{296}(101,\cdot)\) |
Projective image: | $C_1$ |
Projective field: | Galois closure of \(\Q\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{6} - 74x^{4} + 296x^{2} - 296 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: \( x^{2} + 21x + 5 \)
Roots:
$r_{ 1 }$ | $=$ | \( 12 a + 11 + \left(22 a + 6\right)\cdot 23 + \left(18 a + 15\right)\cdot 23^{2} + \left(19 a + 12\right)\cdot 23^{3} + \left(3 a + 17\right)\cdot 23^{4} + \left(16 a + 8\right)\cdot 23^{5} +O(23^{6})\) |
$r_{ 2 }$ | $=$ | \( 5 a + 18 + \left(18 a + 18\right)\cdot 23 + \left(3 a + 16\right)\cdot 23^{2} + \left(21 a + 3\right)\cdot 23^{3} + \left(a + 20\right)\cdot 23^{4} + \left(2 a + 21\right)\cdot 23^{5} +O(23^{6})\) |
$r_{ 3 }$ | $=$ | \( 10 a + 13 + 4\cdot 23 + \left(20 a + 3\right)\cdot 23^{2} + \left(5 a + 4\right)\cdot 23^{3} + \left(8 a + 6\right)\cdot 23^{4} + \left(16 a + 22\right)\cdot 23^{5} +O(23^{6})\) |
$r_{ 4 }$ | $=$ | \( 11 a + 12 + 16\cdot 23 + \left(4 a + 7\right)\cdot 23^{2} + \left(3 a + 10\right)\cdot 23^{3} + \left(19 a + 5\right)\cdot 23^{4} + \left(6 a + 14\right)\cdot 23^{5} +O(23^{6})\) |
$r_{ 5 }$ | $=$ | \( 18 a + 5 + \left(4 a + 4\right)\cdot 23 + \left(19 a + 6\right)\cdot 23^{2} + \left(a + 19\right)\cdot 23^{3} + \left(21 a + 2\right)\cdot 23^{4} + \left(20 a + 1\right)\cdot 23^{5} +O(23^{6})\) |
$r_{ 6 }$ | $=$ | \( 13 a + 10 + \left(22 a + 18\right)\cdot 23 + \left(2 a + 19\right)\cdot 23^{2} + \left(17 a + 18\right)\cdot 23^{3} + \left(14 a + 16\right)\cdot 23^{4} + 6 a\cdot 23^{5} +O(23^{6})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value |
$1$ | $1$ | $()$ | $1$ |
$1$ | $2$ | $(1,4)(2,5)(3,6)$ | $-1$ |
$1$ | $3$ | $(1,3,2)(4,6,5)$ | $-\zeta_{3} - 1$ |
$1$ | $3$ | $(1,2,3)(4,5,6)$ | $\zeta_{3}$ |
$1$ | $6$ | $(1,6,2,4,3,5)$ | $\zeta_{3} + 1$ |
$1$ | $6$ | $(1,5,3,4,2,6)$ | $-\zeta_{3}$ |
The blue line marks the conjugacy class containing complex conjugation.