Basic invariants
Dimension: | $1$ |
Group: | $C_4$ |
Conductor: | \(680\)\(\medspace = 2^{3} \cdot 5 \cdot 17 \) |
Artin field: | Galois closure of 4.4.7860800.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_4$ |
Parity: | even |
Dirichlet character: | \(\chi_{680}(429,\cdot)\) |
Projective image: | $C_1$ |
Projective field: | Galois closure of \(\Q\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{4} - 170x^{2} + 6800 \) . |
The roots of $f$ are computed in $\Q_{ 13 }$ to precision 7.
Roots:
$r_{ 1 }$ | $=$ | \( 2 + 11\cdot 13 + 2\cdot 13^{2} + 2\cdot 13^{3} + 4\cdot 13^{4} + 8\cdot 13^{5} + 12\cdot 13^{6} +O(13^{7})\) |
$r_{ 2 }$ | $=$ | \( 6 + 8\cdot 13 + 8\cdot 13^{2} + 8\cdot 13^{3} + 6\cdot 13^{4} + 2\cdot 13^{5} + 12\cdot 13^{6} +O(13^{7})\) |
$r_{ 3 }$ | $=$ | \( 7 + 4\cdot 13 + 4\cdot 13^{2} + 4\cdot 13^{3} + 6\cdot 13^{4} + 10\cdot 13^{5} +O(13^{7})\) |
$r_{ 4 }$ | $=$ | \( 11 + 13 + 10\cdot 13^{2} + 10\cdot 13^{3} + 8\cdot 13^{4} + 4\cdot 13^{5} +O(13^{7})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $1$ | ✓ |
$1$ | $2$ | $(1,4)(2,3)$ | $-1$ | |
$1$ | $4$ | $(1,3,4,2)$ | $\zeta_{4}$ | |
$1$ | $4$ | $(1,2,4,3)$ | $-\zeta_{4}$ |