Basic invariants
Dimension: | $1$ |
Group: | $C_6$ |
Conductor: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Artin field: | Galois closure of 6.6.10077696.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_6$ |
Parity: | even |
Dirichlet character: | \(\chi_{72}(11,\cdot)\) |
Projective image: | $C_1$ |
Projective field: | Galois closure of \(\Q\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{6} - 12x^{4} + 36x^{2} - 24 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: \( x^{2} + 16x + 3 \)
Roots:
$r_{ 1 }$ | $=$ | \( 16 a + 9 + \left(9 a + 11\right)\cdot 17 + \left(5 a + 10\right)\cdot 17^{2} + \left(16 a + 11\right)\cdot 17^{3} + \left(16 a + 16\right)\cdot 17^{4} +O(17^{5})\) |
$r_{ 2 }$ | $=$ | \( 4 a + 15 + \left(3 a + 8\right)\cdot 17 + \left(3 a + 8\right)\cdot 17^{2} + \left(3 a + 8\right)\cdot 17^{3} + 2 a\cdot 17^{4} +O(17^{5})\) |
$r_{ 3 }$ | $=$ | \( 12 a + 11 + \left(6 a + 2\right)\cdot 17 + \left(2 a + 2\right)\cdot 17^{2} + \left(13 a + 3\right)\cdot 17^{3} + \left(14 a + 16\right)\cdot 17^{4} +O(17^{5})\) |
$r_{ 4 }$ | $=$ | \( a + 8 + \left(7 a + 5\right)\cdot 17 + \left(11 a + 6\right)\cdot 17^{2} + 5\cdot 17^{3} +O(17^{5})\) |
$r_{ 5 }$ | $=$ | \( 13 a + 2 + \left(13 a + 8\right)\cdot 17 + \left(13 a + 8\right)\cdot 17^{2} + \left(13 a + 8\right)\cdot 17^{3} + \left(14 a + 16\right)\cdot 17^{4} +O(17^{5})\) |
$r_{ 6 }$ | $=$ | \( 5 a + 6 + \left(10 a + 14\right)\cdot 17 + \left(14 a + 14\right)\cdot 17^{2} + \left(3 a + 13\right)\cdot 17^{3} + 2 a\cdot 17^{4} +O(17^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value |
$1$ | $1$ | $()$ | $1$ |
$1$ | $2$ | $(1,4)(2,5)(3,6)$ | $-1$ |
$1$ | $3$ | $(1,6,5)(2,4,3)$ | $\zeta_{3}$ |
$1$ | $3$ | $(1,5,6)(2,3,4)$ | $-\zeta_{3} - 1$ |
$1$ | $6$ | $(1,2,6,4,5,3)$ | $\zeta_{3} + 1$ |
$1$ | $6$ | $(1,3,5,4,6,2)$ | $-\zeta_{3}$ |
The blue line marks the conjugacy class containing complex conjugation.