Basic invariants
Dimension: | $2$ |
Group: | $D_{5}$ |
Conductor: | \(103\) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 5.1.10609.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $D_{5}$ |
Parity: | odd |
Determinant: | 1.103.2t1.a.a |
Projective image: | $D_5$ |
Projective stem field: | Galois closure of 5.1.10609.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{5} - 2x^{4} + 3x^{3} - 3x^{2} + x + 1 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: \( x^{2} + 7x + 2 \)
Roots:
$r_{ 1 }$ | $=$ | \( 7 a + 1 + \left(5 a + 2\right)\cdot 11 + \left(7 a + 1\right)\cdot 11^{2} + \left(4 a + 3\right)\cdot 11^{3} + \left(8 a + 2\right)\cdot 11^{4} +O(11^{5})\) |
$r_{ 2 }$ | $=$ | \( 8 a + \left(5 a + 7\right)\cdot 11 + \left(10 a + 5\right)\cdot 11^{2} + \left(3 a + 2\right)\cdot 11^{3} + \left(4 a + 2\right)\cdot 11^{4} +O(11^{5})\) |
$r_{ 3 }$ | $=$ | \( 3 a + 10 + \left(5 a + 10\right)\cdot 11 + 8\cdot 11^{2} + \left(7 a + 7\right)\cdot 11^{3} + \left(6 a + 4\right)\cdot 11^{4} +O(11^{5})\) |
$r_{ 4 }$ | $=$ | \( 4 a + 7 + \left(5 a + 6\right)\cdot 11 + \left(3 a + 3\right)\cdot 11^{2} + \left(6 a + 3\right)\cdot 11^{3} + \left(2 a + 9\right)\cdot 11^{4} +O(11^{5})\) |
$r_{ 5 }$ | $=$ | \( 6 + 6\cdot 11 + 2\cdot 11^{2} + 5\cdot 11^{3} + 3\cdot 11^{4} +O(11^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 5 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 5 }$ | Character value |
$1$ | $1$ | $()$ | $2$ |
$5$ | $2$ | $(1,2)(3,5)$ | $0$ |
$2$ | $5$ | $(1,5,4,3,2)$ | $-\zeta_{5}^{3} - \zeta_{5}^{2} - 1$ |
$2$ | $5$ | $(1,4,2,5,3)$ | $\zeta_{5}^{3} + \zeta_{5}^{2}$ |
The blue line marks the conjugacy class containing complex conjugation.