Properties

Label 2.1053.12t18.a.a
Dimension $2$
Group $S_3 \times C_6$
Conductor $1053$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $S_3 \times C_6$
Conductor: \(1053\)\(\medspace = 3^{4} \cdot 13 \)
Artin stem field: Galois closure of 18.0.2981391508243921935123.1
Galois orbit size: $2$
Smallest permutation container: $C_6\times S_3$
Parity: odd
Determinant: 1.117.6t1.h.b
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.351.1

Defining polynomial

$f(x)$$=$ \( x^{18} + 3 x^{16} - 3 x^{15} + 18 x^{14} + 24 x^{13} + 39 x^{12} + 63 x^{11} + 66 x^{10} + 92 x^{9} + \cdots + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: \( x^{6} + x^{4} + 9x^{3} + 9x^{2} + x + 5 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 4 a^{5} + 9 a^{4} + 11 a^{2} + 12 a + 21 + \left(21 a^{5} + 14 a^{4} + 11 a^{3} + 7 a^{2} + 3 a + 11\right)\cdot 23 + \left(17 a^{5} + 13 a^{4} + 4 a^{3} + 16 a^{2} + 21 a + 19\right)\cdot 23^{2} + \left(12 a^{5} + 3 a^{4} + 12 a^{3} + 20 a^{2} + 7 a + 4\right)\cdot 23^{3} + \left(8 a^{5} + 9 a^{4} + 15 a^{3} + 14 a^{2} + 9 a + 18\right)\cdot 23^{4} + \left(14 a^{5} + 20 a^{4} + 8 a^{3} + 11 a^{2} + 9 a + 6\right)\cdot 23^{5} + \left(13 a^{5} + a^{4} + 15 a^{3} + 6 a^{2} + 4 a + 11\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 15 a^{5} + 6 a^{4} + 4 a^{3} + 15 a^{2} + 15 a + 19 + \left(3 a^{5} + 2 a^{4} + 21 a^{3} + 13 a^{2} + 15\right)\cdot 23 + \left(5 a^{5} + 19 a^{4} + 12 a^{3} + a^{2} + 9 a + 7\right)\cdot 23^{2} + \left(22 a^{5} + 11 a^{4} + 5 a^{3} + 12 a^{2} + 12 a + 13\right)\cdot 23^{3} + \left(18 a^{5} + 7 a^{4} + 2 a^{3} + 9 a + 20\right)\cdot 23^{4} + \left(4 a^{5} + 5 a^{4} + 9 a^{3} + 2 a^{2} + 4 a + 2\right)\cdot 23^{5} + \left(19 a^{5} + 9 a^{4} + 19 a + 15\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 7 a^{5} + 20 a^{4} + 7 a^{3} + 7 a^{2} + 12 a + 11 + \left(18 a^{5} + 3 a^{4} + 10 a^{3} + 4 a + 6\right)\cdot 23 + \left(6 a^{5} + 9 a^{4} + 5 a^{2} + 13 a + 19\right)\cdot 23^{2} + \left(22 a^{5} + 12 a^{4} + 3 a^{3} + 16 a^{2} + 14\right)\cdot 23^{3} + \left(2 a^{5} + 22 a^{4} + 5 a^{3} + 3 a^{2} + 12 a + 7\right)\cdot 23^{4} + \left(12 a^{5} + 20 a^{4} + 22 a^{3} + 13 a^{2} + 17\right)\cdot 23^{5} + \left(5 a^{5} + 4 a^{4} + 14 a^{2} + 6 a + 4\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 5 a^{5} + 15 a^{4} + 8 a^{3} + 12 a^{2} + 5 a + 6 + \left(7 a^{5} + 12 a^{4} + 15 a^{3} + 21 a^{2} + 6 a + 14\right)\cdot 23 + \left(13 a^{5} + 7 a^{4} + 8 a^{3} + 4 a^{2} + a + 3\right)\cdot 23^{2} + \left(a^{5} + 5 a^{4} + 18 a^{3} + 8 a^{2} + 18 a + 22\right)\cdot 23^{3} + \left(11 a^{5} + 5 a^{4} + 20 a^{2} + 5 a + 17\right)\cdot 23^{4} + \left(5 a^{5} + 16 a^{4} + 13 a^{3} + 11 a^{2} + 4 a + 19\right)\cdot 23^{5} + \left(5 a^{5} + 2 a^{4} + 17 a^{3} + 7 a^{2} + 19 a + 12\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 21 a^{5} + 16 a^{4} + 8 a^{3} + 3 a^{2} + 20 a + 19 + \left(22 a^{5} + 11 a^{3} + a^{2} + 4 a + 10\right)\cdot 23 + \left(21 a^{5} + 5 a^{4} + 8 a^{3} + 15 a^{2} + 22 a + 6\right)\cdot 23^{2} + \left(11 a^{5} + 9 a^{4} + 20 a^{3} + a^{2} + 21 a + 13\right)\cdot 23^{3} + \left(17 a^{5} + 10 a^{4} + 10 a^{3} + 16 a^{2} + 17 a + 11\right)\cdot 23^{4} + \left(2 a^{5} + 13 a^{4} + 8 a + 3\right)\cdot 23^{5} + \left(8 a^{5} + 20 a^{4} + 22 a^{3} + 2 a^{2} + 12 a + 11\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 14 a^{5} + 22 a^{4} + 15 a^{3} + 6 a + 19 + \left(17 a^{5} + 18 a^{4} + 19 a^{3} + 17 a^{2} + 13 a + 19\right)\cdot 23 + \left(14 a^{5} + a^{4} + 9 a^{3} + a^{2} + 22\right)\cdot 23^{2} + \left(8 a^{5} + 14 a^{4} + 15 a^{3} + 17 a^{2} + 20 a + 18\right)\cdot 23^{3} + \left(3 a^{5} + 8 a^{4} + 6 a^{3} + 10 a^{2} + 7 a + 9\right)\cdot 23^{4} + \left(3 a^{5} + 9 a^{4} + a^{3} + 22 a^{2} + 9 a + 19\right)\cdot 23^{5} + \left(4 a^{5} + 18 a^{4} + 13 a^{3} + 8 a^{2} + 22 a + 21\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 7 a^{5} + 9 a^{4} + 11 a^{3} + 6 a^{2} + 22 a + 22 + \left(19 a^{5} + 2 a^{4} + 15 a^{3} + 22 a^{2} + 22 a + 15\right)\cdot 23 + \left(16 a^{5} + 7 a^{4} + 9 a^{3} + 5 a^{2} + 16 a + 9\right)\cdot 23^{2} + \left(20 a^{5} + 22 a^{4} + 16 a^{3} + 5 a^{2} + 13 a + 10\right)\cdot 23^{3} + \left(3 a^{5} + 14 a^{4} + 16 a^{3} + 16 a^{2} + 9 a + 7\right)\cdot 23^{4} + \left(19 a^{5} + 13 a^{4} + a^{2} + 8 a + 16\right)\cdot 23^{5} + \left(6 a^{5} + 17 a^{4} + 16 a^{3} + 22 a^{2} + 10 a + 15\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 4 a^{5} + 10 a^{4} + 4 a^{3} + 2 a^{2} + 5 a + 9 + \left(21 a^{5} + 17 a^{4} + 11 a^{3} + 12 a^{2} + 18\right)\cdot 23 + \left(12 a^{5} + 9 a^{4} + 20 a^{2} + 12 a + 17\right)\cdot 23^{2} + \left(16 a^{5} + 7 a^{4} + 22 a^{3} + 2 a^{2} + 15 a + 17\right)\cdot 23^{3} + \left(16 a^{5} + 2 a^{4} + 13 a^{3} + 20 a^{2} + 12 a + 3\right)\cdot 23^{4} + \left(20 a^{5} + 15 a^{3} + 14 a^{2} + 12 a + 4\right)\cdot 23^{5} + \left(14 a^{5} + 15 a^{4} + 15 a^{3} + 16 a^{2} + 5 a + 1\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( 22 a^{5} + 7 a^{4} + 21 a^{3} + 17 a^{2} + 17 a + 13 + \left(13 a^{5} + 21 a^{4} + 22 a^{3} + 20 a^{2} + 2 a\right)\cdot 23 + \left(9 a^{5} + 10 a^{4} + 14 a^{3} + 11 a^{2} + 3 a + 5\right)\cdot 23^{2} + \left(18 a^{5} + 11 a^{4} + 7 a^{3} + 21 a^{2} + 20 a + 5\right)\cdot 23^{3} + \left(17 a^{5} + 7 a^{4} + 12 a^{2} + 7 a + 2\right)\cdot 23^{4} + \left(10 a^{5} + 2 a^{4} + 2 a^{3} + 17 a^{2} + 2 a + 3\right)\cdot 23^{5} + \left(19 a^{5} + 17 a^{4} + a^{3} + 12 a^{2} + 20 a + 9\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 10 }$ $=$ \( a^{5} + 13 a^{4} + 12 a^{3} + 8 a^{2} + 12 a + 17 + \left(19 a^{5} + 14 a^{4} + 17 a^{3} + 17 a^{2} + 4 a + 13\right)\cdot 23 + \left(a^{5} + 3 a^{4} + 15 a^{3} + 5 a^{2} + 12 a + 21\right)\cdot 23^{2} + \left(19 a^{5} + 20 a^{4} + 3 a^{3} + 18 a^{2} + 10 a + 9\right)\cdot 23^{3} + \left(3 a^{5} + 20 a^{4} + 5 a^{3} + 6 a^{2} + 21 a + 5\right)\cdot 23^{4} + \left(21 a^{5} + 18 a^{4} + 9 a^{3} + 13 a^{2} + 16 a + 21\right)\cdot 23^{5} + \left(11 a^{5} + 16 a^{4} + 17 a^{3} + 8 a^{2} + a + 5\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 11 }$ $=$ \( 11 a^{5} + 7 a^{4} + a^{3} + 21 a^{2} + 18 a + 13 + \left(15 a^{5} + 14 a^{4} + 19 a^{3} + 19 a^{2} + 3 a + 1\right)\cdot 23 + \left(12 a^{5} + 12 a^{4} + 13 a^{3} + 17 a^{2} + 17 a + 7\right)\cdot 23^{2} + \left(22 a^{5} + 13 a^{3} + 21 a^{2} + 10 a + 17\right)\cdot 23^{3} + \left(3 a^{5} + 17 a^{4} + 19 a^{3} + 7 a^{2} + 20 a + 5\right)\cdot 23^{4} + \left(11 a^{5} + 21 a^{4} + 20 a^{3} + 14 a^{2} + 14 a + 3\right)\cdot 23^{5} + \left(10 a^{5} + 2 a^{4} + 21 a^{3} + 2 a^{2} + 11 a + 1\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 12 }$ $=$ \( 17 a^{5} + 7 a^{4} + 14 a^{3} + 7 a + 11 + \left(12 a^{5} + 22 a^{4} + 7 a^{3} + 3 a^{2} + 20 a + 6\right)\cdot 23 + \left(19 a^{5} + 4 a^{4} + 21 a^{3} + 5 a^{2} + 2 a + 8\right)\cdot 23^{2} + \left(6 a^{5} + 12 a^{4} + 21 a^{3} + 19 a^{2} + 12 a + 7\right)\cdot 23^{3} + \left(a^{5} + 5 a^{3} + 16 a^{2} + 5 a + 13\right)\cdot 23^{4} + \left(16 a^{5} + 7 a^{4} + 20 a^{3} + 3 a^{2} + 12 a + 3\right)\cdot 23^{5} + \left(19 a^{5} + 11 a^{4} + 5 a^{3} + 11 a^{2} + 15 a + 21\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 13 }$ $=$ \( 22 a^{5} + 17 a^{4} + 22 a^{3} + 3 a^{2} + 9 a + 10 + \left(a^{5} + 4 a^{4} + 8 a^{3} + 7 a^{2} + 5\right)\cdot 23 + \left(5 a^{5} + 9 a^{4} + 14 a^{3} + 20 a^{2} + 10 a + 18\right)\cdot 23^{2} + \left(10 a^{5} + 18 a^{4} + 14 a^{3} + 22 a^{2} + 9 a + 22\right)\cdot 23^{3} + \left(12 a^{5} + 19 a^{4} + 4 a^{3} + 8 a^{2} + 2 a + 8\right)\cdot 23^{4} + \left(5 a^{5} + 13 a^{4} + 19 a^{3} + 17 a^{2} + 17 a + 16\right)\cdot 23^{5} + \left(19 a^{5} + 12 a^{4} + 3 a^{3} + 22\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 14 }$ $=$ \( 4 a^{5} + 7 a^{4} + 15 a^{3} + 6 a^{2} + 3 a + 18 + \left(21 a^{5} + 3 a^{4} + 13 a^{3} + 20 a^{2} + 22 a + 11\right)\cdot 23 + \left(4 a^{5} + 17 a^{4} + 9 a^{3} + a + 20\right)\cdot 23^{2} + \left(7 a^{5} + 3 a^{4} + 18 a^{3} + 8 a^{2} + 18 a + 14\right)\cdot 23^{3} + \left(10 a^{5} + 13 a^{4} + 6 a^{3} + 2 a^{2} + 21\right)\cdot 23^{4} + \left(20 a^{5} + 17 a^{4} + 21 a^{3} + 6 a^{2} + 6 a + 15\right)\cdot 23^{5} + \left(11 a^{5} + 21 a^{4} + 6 a^{3} + 6 a^{2} + 21 a + 6\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 15 }$ $=$ \( 16 a^{4} + 12 a^{3} + 12 a^{2} + 2 a + 19 + \left(2 a^{5} + 3 a^{4} + 19 a^{3} + 21 a^{2} + 18 a + 3\right)\cdot 23 + \left(16 a^{5} + 10 a^{4} + 15 a^{3} + 19 a^{2} + 6\right)\cdot 23^{2} + \left(16 a^{5} + 7 a^{4} + 4 a^{3} + 4 a^{2} + 3 a + 13\right)\cdot 23^{3} + \left(6 a^{5} + 5 a^{4} + 13 a^{3} + 7 a^{2} + 22 a + 8\right)\cdot 23^{4} + \left(19 a^{5} + 13 a^{4} + 17 a^{3} + 15 a^{2} + 11 a + 8\right)\cdot 23^{5} + \left(14 a^{5} + 16 a^{4} + a^{3} + 13 a^{2} + 20 a + 17\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 16 }$ $=$ \( 8 a^{5} + 2 a^{4} + 18 a^{3} + 8 a^{2} + 13 a + 4 + \left(13 a^{5} + 21 a^{4} + 7 a^{3} + 11 a^{2} + 10 a + 12\right)\cdot 23 + \left(14 a^{5} + 12 a^{4} + 12 a^{3} + 21 a^{2} + 15 a + 13\right)\cdot 23^{2} + \left(17 a^{5} + 10 a^{4} + 17 a^{3} + 13 a^{2} + 13 a + 14\right)\cdot 23^{3} + \left(6 a^{5} + 22 a^{4} + 9 a^{3} + 22 a^{2} + 21 a + 1\right)\cdot 23^{4} + \left(21 a^{5} + 11 a^{4} + 20 a^{3} + 2 a^{2} + 14 a + 5\right)\cdot 23^{5} + \left(6 a^{5} + 20 a^{4} + 20 a^{3} + 6 a^{2} + 21 a + 2\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 17 }$ $=$ \( 14 a^{5} + 14 a^{3} + 22 a^{2} + 8 a + 14 + \left(7 a^{5} + 8 a^{4} + 15 a^{3} + a^{2} + 14 a + 10\right)\cdot 23 + \left(11 a^{5} + 5 a^{4} + 13 a^{2} + 6 a + 9\right)\cdot 23^{2} + \left(11 a^{5} + 13 a^{4} + 12 a^{3} + 22 a^{2} + 13 a + 15\right)\cdot 23^{3} + \left(a^{5} + 18 a^{4} + 15 a^{3} + 21 a^{2} + 7 a + 5\right)\cdot 23^{4} + \left(9 a^{5} + 10 a^{4} + a^{3} + 7 a^{2} + 22 a + 16\right)\cdot 23^{5} + \left(4 a^{5} + 22 a^{4} + 2 a^{3} + 18 a^{2} + 21 a + 10\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 18 }$ $=$ \( 8 a^{5} + a^{4} + 21 a^{3} + 8 a^{2} + 21 a + 8 + \left(14 a^{5} + 21 a^{4} + 4 a^{3} + 11 a^{2} + 7 a + 4\right)\cdot 23 + \left(a^{5} + 10 a^{3} + 19 a^{2} + 17 a + 13\right)\cdot 23^{2} + \left(6 a^{5} + 2 a^{3} + 15 a^{2} + 8 a + 16\right)\cdot 23^{3} + \left(13 a^{5} + a^{4} + 8 a^{3} + 19 a^{2} + 12 a + 13\right)\cdot 23^{4} + \left(12 a^{5} + 13 a^{4} + 3 a^{3} + 6 a^{2} + 7 a\right)\cdot 23^{5} + \left(10 a^{5} + 20 a^{4} + a^{3} + 2 a^{2} + 18 a + 16\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 18 }$

Cycle notation
$(3,18)(4,6)(5,17)(8,14)(9,12)(13,15)$
$(1,15,6,10,4,13)(2,5,14,11,8,17)(3,12,16,9,18,7)$
$(1,6)(2,14)(7,12)(10,13)(11,17)(16,18)$
$(1,2,16)(3,4,8)(5,9,15)(6,14,18)(7,10,11)(12,13,17)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 18 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,10)(2,11)(3,9)(4,15)(5,8)(6,13)(7,16)(12,18)(14,17)$$-2$
$3$$2$$(1,6)(2,14)(7,12)(10,13)(11,17)(16,18)$$0$
$3$$2$$(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)$$0$
$1$$3$$(1,2,16)(3,4,8)(5,9,15)(6,14,18)(7,10,11)(12,13,17)$$-2 \zeta_{3} - 2$
$1$$3$$(1,16,2)(3,8,4)(5,15,9)(6,18,14)(7,11,10)(12,17,13)$$2 \zeta_{3}$
$2$$3$$(1,6,4)(2,14,8)(3,16,18)(5,11,17)(7,12,9)(10,13,15)$$-1$
$2$$3$$(1,18,8)(2,6,3)(4,16,14)(5,10,12)(7,17,15)(9,11,13)$$-\zeta_{3}$
$2$$3$$(1,8,18)(2,3,6)(4,14,16)(5,12,10)(7,15,17)(9,13,11)$$\zeta_{3} + 1$
$1$$6$$(1,11,16,10,2,7)(3,15,8,9,4,5)(6,17,18,13,14,12)$$2 \zeta_{3} + 2$
$1$$6$$(1,7,2,10,16,11)(3,5,4,9,8,15)(6,12,14,13,18,17)$$-2 \zeta_{3}$
$2$$6$$(1,15,6,10,4,13)(2,5,14,11,8,17)(3,12,16,9,18,7)$$1$
$2$$6$$(1,5,18,10,8,12)(2,9,6,11,3,13)(4,17,16,15,14,7)$$-\zeta_{3} - 1$
$2$$6$$(1,12,8,10,18,5)(2,13,3,11,6,9)(4,7,14,15,16,17)$$\zeta_{3}$
$3$$6$$(1,14,16,6,2,18)(3,4,8)(5,9,15)(7,13,11,12,10,17)$$0$
$3$$6$$(1,18,2,6,16,14)(3,8,4)(5,15,9)(7,17,10,12,11,13)$$0$
$3$$6$$(1,11,16,10,2,7)(3,13,8,12,4,17)(5,18,15,14,9,6)$$0$
$3$$6$$(1,7,2,10,16,11)(3,17,4,12,8,13)(5,6,9,14,15,18)$$0$