Properties

Label 2.1164.4t3.a.a
Dimension 22
Group D4D_{4}
Conductor 11641164
Root number 11
Indicator 11

Related objects

Downloads

Learn more

Basic invariants

Dimension: 22
Group: D4D_{4}
Conductor: 11641164=22397\medspace = 2^{2} \cdot 3 \cdot 97
Frobenius-Schur indicator: 11
Root number: 11
Artin stem field: Galois closure of 4.4.112908.1
Galois orbit size: 11
Smallest permutation container: D4D_{4}
Parity: even
Determinant: 1.1164.2t1.a.a
Projective image: C22C_2^2
Projective field: Galois closure of Q(3,97)\Q(\sqrt{3}, \sqrt{97})

Defining polynomial

f(x)f(x)== x4x316x24x+16 x^{4} - x^{3} - 16x^{2} - 4x + 16 Copy content Toggle raw display .

The roots of ff are computed in Q61\Q_{ 61 } to precision 5.

Roots:
r1r_{ 1 } == 11+661+2612+33613+25614+O(615) 11 + 6\cdot 61 + 2\cdot 61^{2} + 33\cdot 61^{3} + 25\cdot 61^{4} +O(61^{5}) Copy content Toggle raw display
r2r_{ 2 } == 17+5761+59612+38613+34614+O(615) 17 + 57\cdot 61 + 59\cdot 61^{2} + 38\cdot 61^{3} + 34\cdot 61^{4} +O(61^{5}) Copy content Toggle raw display
r3r_{ 3 } == 40+5361+24613+5614+O(615) 40 + 53\cdot 61 + 24\cdot 61^{3} + 5\cdot 61^{4} +O(61^{5}) Copy content Toggle raw display
r4r_{ 4 } == 55+461+59612+25613+56614+O(615) 55 + 4\cdot 61 + 59\cdot 61^{2} + 25\cdot 61^{3} + 56\cdot 61^{4} +O(61^{5}) Copy content Toggle raw display

Generators of the action on the roots r1,,r4r_1, \ldots, r_{ 4 }

Cycle notation
(1,3)(2,4)(1,3)(2,4)
(3,4)(3,4)

Character values on conjugacy classes

SizeOrderAction on r1,,r4r_1, \ldots, r_{ 4 } Character valueComplex conjugation
1111()()22
1122(1,2)(3,4)(1,2)(3,4)2-2
2222(1,3)(2,4)(1,3)(2,4)00
2222(1,2)(1,2)00
2244(1,4,2,3)(1,4,2,3)00