Basic invariants
Dimension: | $2$ |
Group: | $D_{4}$ |
Conductor: | \(1164\)\(\medspace = 2^{2} \cdot 3 \cdot 97 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 4.4.112908.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{4}$ |
Parity: | even |
Determinant: | 1.1164.2t1.a.a |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(\sqrt{3}, \sqrt{97})\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{4} - x^{3} - 16x^{2} - 4x + 16 \) . |
The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 11 + 6\cdot 61 + 2\cdot 61^{2} + 33\cdot 61^{3} + 25\cdot 61^{4} +O(61^{5})\) |
$r_{ 2 }$ | $=$ | \( 17 + 57\cdot 61 + 59\cdot 61^{2} + 38\cdot 61^{3} + 34\cdot 61^{4} +O(61^{5})\) |
$r_{ 3 }$ | $=$ | \( 40 + 53\cdot 61 + 24\cdot 61^{3} + 5\cdot 61^{4} +O(61^{5})\) |
$r_{ 4 }$ | $=$ | \( 55 + 4\cdot 61 + 59\cdot 61^{2} + 25\cdot 61^{3} + 56\cdot 61^{4} +O(61^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | ✓ |
$1$ | $2$ | $(1,2)(3,4)$ | $-2$ | |
$2$ | $2$ | $(1,3)(2,4)$ | $0$ | |
$2$ | $2$ | $(1,2)$ | $0$ | |
$2$ | $4$ | $(1,4,2,3)$ | $0$ |