Properties

Label 2.128516.3t2.b.a
Dimension $2$
Group $S_3$
Conductor $128516$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $S_3$
Conductor: \(128516\)\(\medspace = 2^{2} \cdot 19^{2} \cdot 89 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 3.1.128516.2
Galois orbit size: $1$
Smallest permutation container: $S_3$
Parity: odd
Determinant: 1.356.2t1.a.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.128516.2

Defining polynomial

$f(x)$$=$ \( x^{3} - 19x - 76 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 23 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 5 + 14\cdot 23 + 20\cdot 23^{2} + 4\cdot 23^{3} + 16\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 20 + 5\cdot 23 + 15\cdot 23^{3} + 11\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 21 + 2\cdot 23 + 2\cdot 23^{2} + 3\cdot 23^{3} + 18\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display

Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $

Cycle notation
$(1,2,3)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ Character valueComplex conjugation
$1$$1$$()$$2$
$3$$2$$(1,2)$$0$
$2$$3$$(1,2,3)$$-1$