Properties

Label 2.128516.3t2.b.a
Dimension 22
Group S3S_3
Conductor 128516128516
Root number 11
Indicator 11

Related objects

Downloads

Learn more

Basic invariants

Dimension: 22
Group: S3S_3
Conductor: 128516128516=2219289\medspace = 2^{2} \cdot 19^{2} \cdot 89
Frobenius-Schur indicator: 11
Root number: 11
Artin stem field: Galois closure of 3.1.128516.2
Galois orbit size: 11
Smallest permutation container: S3S_3
Parity: odd
Determinant: 1.356.2t1.a.a
Projective image: S3S_3
Projective stem field: Galois closure of 3.1.128516.2

Defining polynomial

f(x)f(x)== x319x76 x^{3} - 19x - 76 Copy content Toggle raw display .

The roots of ff are computed in Q23\Q_{ 23 } to precision 5.

Roots:
r1r_{ 1 } == 5+1423+20232+4233+16234+O(235) 5 + 14\cdot 23 + 20\cdot 23^{2} + 4\cdot 23^{3} + 16\cdot 23^{4} +O(23^{5}) Copy content Toggle raw display
r2r_{ 2 } == 20+523+15233+11234+O(235) 20 + 5\cdot 23 + 15\cdot 23^{3} + 11\cdot 23^{4} +O(23^{5}) Copy content Toggle raw display
r3r_{ 3 } == 21+223+2232+3233+18234+O(235) 21 + 2\cdot 23 + 2\cdot 23^{2} + 3\cdot 23^{3} + 18\cdot 23^{4} +O(23^{5}) Copy content Toggle raw display

Generators of the action on the roots r1,r2,r3 r_{ 1 }, r_{ 2 }, r_{ 3 }

Cycle notation
(1,2,3)(1,2,3)
(1,2)(1,2)

Character values on conjugacy classes

SizeOrderAction on r1,r2,r3 r_{ 1 }, r_{ 2 }, r_{ 3 } Character valueComplex conjugation
1111()()22
3322(1,2)(1,2)00
2233(1,2,3)(1,2,3)1-1