Basic invariants
Dimension: | $2$ |
Group: | $S_3$ |
Conductor: | \(128516\)\(\medspace = 2^{2} \cdot 19^{2} \cdot 89 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 3.1.128516.2 |
Galois orbit size: | $1$ |
Smallest permutation container: | $S_3$ |
Parity: | odd |
Determinant: | 1.356.2t1.a.a |
Projective image: | $S_3$ |
Projective stem field: | Galois closure of 3.1.128516.2 |
Defining polynomial
$f(x)$ | $=$ | \( x^{3} - 19x - 76 \) . |
The roots of $f$ are computed in $\Q_{ 23 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 5 + 14\cdot 23 + 20\cdot 23^{2} + 4\cdot 23^{3} + 16\cdot 23^{4} +O(23^{5})\) |
$r_{ 2 }$ | $=$ | \( 20 + 5\cdot 23 + 15\cdot 23^{3} + 11\cdot 23^{4} +O(23^{5})\) |
$r_{ 3 }$ | $=$ | \( 21 + 2\cdot 23 + 2\cdot 23^{2} + 3\cdot 23^{3} + 18\cdot 23^{4} +O(23^{5})\) |
Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | |
$3$ | $2$ | $(1,2)$ | $0$ | ✓ |
$2$ | $3$ | $(1,2,3)$ | $-1$ |