Properties

Label 2.140.6t5.a
Dimension 22
Group S3×C3S_3\times C_3
Conductor 140140
Indicator 00

Related objects

Downloads

Learn more

Basic invariants

Dimension:22
Group:S3×C3S_3\times C_3
Conductor:140140=2257\medspace = 2^{2} \cdot 5 \cdot 7
Artin number field: Galois closure of 6.0.392000.1
Galois orbit size: 22
Smallest permutation container: S3×C3S_3\times C_3
Parity: odd
Projective image: S3S_3
Projective field: Galois closure of 3.1.980.1

Galois action

Roots of defining polynomial

The roots of ff are computed in an extension of Q13\Q_{ 13 } to precision 7.
Minimal polynomial of a generator aa of KK over Q13\mathbb{Q}_{ 13 }: x2+12x+2 x^{2} + 12x + 2 Copy content Toggle raw display
Roots:
r1r_{ 1 } == 12a+6+(7a+4)13+(9a+1)132+(9a+8)133+(7a+3)134+(11a+10)135+(6a+2)136+O(137) 12 a + 6 + \left(7 a + 4\right)\cdot 13 + \left(9 a + 1\right)\cdot 13^{2} + \left(9 a + 8\right)\cdot 13^{3} + \left(7 a + 3\right)\cdot 13^{4} + \left(11 a + 10\right)\cdot 13^{5} + \left(6 a + 2\right)\cdot 13^{6} +O(13^{7}) Copy content Toggle raw display
r2r_{ 2 } == 7a+11+(10a+8)13+(3a+8)132+9133+(3a+7)134+(2a+7)135+(12a+12)136+O(137) 7 a + 11 + \left(10 a + 8\right)\cdot 13 + \left(3 a + 8\right)\cdot 13^{2} + 9\cdot 13^{3} + \left(3 a + 7\right)\cdot 13^{4} + \left(2 a + 7\right)\cdot 13^{5} + \left(12 a + 12\right)\cdot 13^{6} +O(13^{7}) Copy content Toggle raw display
r3r_{ 3 } == a+5+5a13+(3a+3)132+(3a+8)133+(5a+1)134+(a+1)135+(6a+11)136+O(137) a + 5 + 5 a\cdot 13 + \left(3 a + 3\right)\cdot 13^{2} + \left(3 a + 8\right)\cdot 13^{3} + \left(5 a + 1\right)\cdot 13^{4} + \left(a + 1\right)\cdot 13^{5} + \left(6 a + 11\right)\cdot 13^{6} +O(13^{7}) Copy content Toggle raw display
r4r_{ 4 } == 6a+5+(2a+12)13+(9a+1)132+(12a+6)133+(9a+10)134+(10a+6)135+9136+O(137) 6 a + 5 + \left(2 a + 12\right)\cdot 13 + \left(9 a + 1\right)\cdot 13^{2} + \left(12 a + 6\right)\cdot 13^{3} + \left(9 a + 10\right)\cdot 13^{4} + \left(10 a + 6\right)\cdot 13^{5} + 9\cdot 13^{6} +O(13^{7}) Copy content Toggle raw display
r5r_{ 5 } == 8a+3+(2a+9)13+(7a+9)132+(3a+11)133+(8a+11)134+(3a+8)135+5a136+O(137) 8 a + 3 + \left(2 a + 9\right)\cdot 13 + \left(7 a + 9\right)\cdot 13^{2} + \left(3 a + 11\right)\cdot 13^{3} + \left(8 a + 11\right)\cdot 13^{4} + \left(3 a + 8\right)\cdot 13^{5} + 5 a\cdot 13^{6} +O(13^{7}) Copy content Toggle raw display
r6r_{ 6 } == 5a+11+(10a+3)13+(5a+1)132+(9a+8)133+(4a+3)134+(9a+4)135+(7a+2)136+O(137) 5 a + 11 + \left(10 a + 3\right)\cdot 13 + \left(5 a + 1\right)\cdot 13^{2} + \left(9 a + 8\right)\cdot 13^{3} + \left(4 a + 3\right)\cdot 13^{4} + \left(9 a + 4\right)\cdot 13^{5} + \left(7 a + 2\right)\cdot 13^{6} +O(13^{7}) Copy content Toggle raw display

Generators of the action on the roots r1,,r6r_1, \ldots, r_{ 6 }

Cycle notation
(1,3)(2,4)(5,6)(1,3)(2,4)(5,6)
(2,6,3)(2,6,3)
(1,4,5)(2,6,3)(1,4,5)(2,6,3)

Character values on conjugacy classes

SizeOrderAction on r1,,r6r_1, \ldots, r_{ 6 } Character values
c1c1 c2c2
11 11 ()() 22 22
33 22 (1,3)(2,4)(5,6)(1,3)(2,4)(5,6) 00 00
11 33 (1,4,5)(2,6,3)(1,4,5)(2,6,3) 2ζ32 \zeta_{3} 2ζ32-2 \zeta_{3} - 2
11 33 (1,5,4)(2,3,6)(1,5,4)(2,3,6) 2ζ32-2 \zeta_{3} - 2 2ζ32 \zeta_{3}
22 33 (2,6,3)(2,6,3) ζ3+1\zeta_{3} + 1 ζ3-\zeta_{3}
22 33 (2,3,6)(2,3,6) ζ3-\zeta_{3} ζ3+1\zeta_{3} + 1
22 33 (1,4,5)(2,3,6)(1,4,5)(2,3,6) 1-1 1-1
33 66 (1,2,4,6,5,3)(1,2,4,6,5,3) 00 00
33 66 (1,3,5,6,4,2)(1,3,5,6,4,2) 00 00
The blue line marks the conjugacy class containing complex conjugation.