Properties

Label 2.14440.3t2.a.a
Dimension $2$
Group $S_3$
Conductor $14440$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $S_3$
Conductor: \(14440\)\(\medspace = 2^{3} \cdot 5 \cdot 19^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 3.1.14440.1
Galois orbit size: $1$
Smallest permutation container: $S_3$
Parity: odd
Determinant: 1.40.2t1.b.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.14440.1

Defining polynomial

$f(x)$$=$ \( x^{3} - x^{2} - 6x + 26 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 13 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 9\cdot 13 + 13^{2} + 9\cdot 13^{3} +O(13^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 3 + 12\cdot 13 + 2\cdot 13^{2} + 3\cdot 13^{3} + 3\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 11 + 4\cdot 13 + 8\cdot 13^{2} + 9\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display

Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $

Cycle notation
$(1,2,3)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ Character valueComplex conjugation
$1$$1$$()$$2$
$3$$2$$(1,2)$$0$
$2$$3$$(1,2,3)$$-1$