Properties

Label 2.14440.3t2.a.a
Dimension 22
Group S3S_3
Conductor 1444014440
Root number 11
Indicator 11

Related objects

Downloads

Learn more

Basic invariants

Dimension: 22
Group: S3S_3
Conductor: 1444014440=235192\medspace = 2^{3} \cdot 5 \cdot 19^{2}
Frobenius-Schur indicator: 11
Root number: 11
Artin stem field: Galois closure of 3.1.14440.1
Galois orbit size: 11
Smallest permutation container: S3S_3
Parity: odd
Determinant: 1.40.2t1.b.a
Projective image: S3S_3
Projective stem field: Galois closure of 3.1.14440.1

Defining polynomial

f(x)f(x)== x3x26x+26 x^{3} - x^{2} - 6x + 26 Copy content Toggle raw display .

The roots of ff are computed in Q13\Q_{ 13 } to precision 5.

Roots:
r1r_{ 1 } == 913+132+9133+O(135) 9\cdot 13 + 13^{2} + 9\cdot 13^{3} +O(13^{5}) Copy content Toggle raw display
r2r_{ 2 } == 3+1213+2132+3133+3134+O(135) 3 + 12\cdot 13 + 2\cdot 13^{2} + 3\cdot 13^{3} + 3\cdot 13^{4} +O(13^{5}) Copy content Toggle raw display
r3r_{ 3 } == 11+413+8132+9134+O(135) 11 + 4\cdot 13 + 8\cdot 13^{2} + 9\cdot 13^{4} +O(13^{5}) Copy content Toggle raw display

Generators of the action on the roots r1,r2,r3 r_{ 1 }, r_{ 2 }, r_{ 3 }

Cycle notation
(1,2,3)(1,2,3)
(1,2)(1,2)

Character values on conjugacy classes

SizeOrderAction on r1,r2,r3 r_{ 1 }, r_{ 2 }, r_{ 3 } Character valueComplex conjugation
1111()()22
3322(1,2)(1,2)00
2233(1,2,3)(1,2,3)1-1