Basic invariants
Dimension: | $2$ |
Group: | $D_{12}$ |
Conductor: | \(1582564\)\(\medspace = 2^{2} \cdot 17^{2} \cdot 37^{2} \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 12.2.426534379192149555604210688.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $D_{12}$ |
Parity: | odd |
Determinant: | 1.4.2t1.a.a |
Projective image: | $D_6$ |
Projective stem field: | Galois closure of 6.2.147324047888.4 |
Defining polynomial
$f(x)$ | $=$ | \( x^{12} - 4 x^{11} - 42 x^{10} + 244 x^{9} + 358 x^{8} - 4976 x^{7} + 3556 x^{6} + 61336 x^{5} + \cdots + 440928 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: \( x^{4} + 16x^{2} + 56x + 5 \)
Roots:
$r_{ 1 }$ | $=$ | \( 39 a^{3} + 45 a^{2} + 31 a + 40 + \left(7 a^{3} + 71 a^{2} + 20 a + 31\right)\cdot 73 + \left(27 a^{3} + 69 a^{2} + 5 a + 9\right)\cdot 73^{2} + \left(24 a^{3} + 5 a^{2} + 43 a + 35\right)\cdot 73^{3} + \left(45 a^{3} + 22 a^{2} + 22 a + 1\right)\cdot 73^{4} + \left(57 a^{3} + 53 a^{2} + a + 7\right)\cdot 73^{5} + \left(41 a^{3} + 43 a^{2} + 37 a + 45\right)\cdot 73^{6} + \left(70 a^{3} + 32 a^{2} + 26 a + 45\right)\cdot 73^{7} + \left(53 a^{3} + 31 a^{2} + 33 a + 18\right)\cdot 73^{8} + \left(24 a^{3} + 49 a^{2} + 62 a + 24\right)\cdot 73^{9} +O(73^{10})\) |
$r_{ 2 }$ | $=$ | \( 39 a^{3} + 45 a^{2} + 31 a + 65 + \left(7 a^{3} + 71 a^{2} + 20 a + 28\right)\cdot 73 + \left(27 a^{3} + 69 a^{2} + 5 a + 9\right)\cdot 73^{2} + \left(24 a^{3} + 5 a^{2} + 43 a + 43\right)\cdot 73^{3} + \left(45 a^{3} + 22 a^{2} + 22 a + 13\right)\cdot 73^{4} + \left(57 a^{3} + 53 a^{2} + a + 69\right)\cdot 73^{5} + \left(41 a^{3} + 43 a^{2} + 37 a + 28\right)\cdot 73^{6} + \left(70 a^{3} + 32 a^{2} + 26 a + 10\right)\cdot 73^{7} + \left(53 a^{3} + 31 a^{2} + 33 a + 9\right)\cdot 73^{8} + \left(24 a^{3} + 49 a^{2} + 62 a + 6\right)\cdot 73^{9} +O(73^{10})\) |
$r_{ 3 }$ | $=$ | \( 39 a^{3} + 45 a^{2} + 31 a + 50 + \left(7 a^{3} + 71 a^{2} + 20 a + 52\right)\cdot 73 + \left(27 a^{3} + 69 a^{2} + 5 a + 38\right)\cdot 73^{2} + \left(24 a^{3} + 5 a^{2} + 43 a + 69\right)\cdot 73^{3} + \left(45 a^{3} + 22 a^{2} + 22 a + 21\right)\cdot 73^{4} + \left(57 a^{3} + 53 a^{2} + a + 68\right)\cdot 73^{5} + \left(41 a^{3} + 43 a^{2} + 37 a + 35\right)\cdot 73^{6} + \left(70 a^{3} + 32 a^{2} + 26 a + 55\right)\cdot 73^{7} + \left(53 a^{3} + 31 a^{2} + 33 a + 7\right)\cdot 73^{8} + \left(24 a^{3} + 49 a^{2} + 62 a + 39\right)\cdot 73^{9} +O(73^{10})\) |
$r_{ 4 }$ | $=$ | \( 31 a^{3} + 47 a^{2} + 34 a + 12 + \left(66 a^{3} + 51 a^{2} + 64 a + 9\right)\cdot 73 + \left(27 a^{3} + 70 a^{2} + 13 a + 49\right)\cdot 73^{2} + \left(61 a^{3} + 45 a^{2} + 2 a + 11\right)\cdot 73^{3} + \left(45 a^{3} + 55 a^{2} + 19 a + 72\right)\cdot 73^{4} + \left(52 a^{3} + 28 a^{2} + 40 a + 38\right)\cdot 73^{5} + \left(45 a^{3} + 39 a^{2} + 66 a + 29\right)\cdot 73^{6} + \left(45 a^{3} + 10 a^{2} + 17 a + 62\right)\cdot 73^{7} + \left(35 a^{3} + 3 a^{2} + 67 a + 43\right)\cdot 73^{8} + \left(4 a^{3} + 53 a^{2} + 43 a + 5\right)\cdot 73^{9} +O(73^{10})\) |
$r_{ 5 }$ | $=$ | \( 31 a^{3} + 47 a^{2} + 34 a + 37 + \left(66 a^{3} + 51 a^{2} + 64 a + 6\right)\cdot 73 + \left(27 a^{3} + 70 a^{2} + 13 a + 49\right)\cdot 73^{2} + \left(61 a^{3} + 45 a^{2} + 2 a + 19\right)\cdot 73^{3} + \left(45 a^{3} + 55 a^{2} + 19 a + 11\right)\cdot 73^{4} + \left(52 a^{3} + 28 a^{2} + 40 a + 28\right)\cdot 73^{5} + \left(45 a^{3} + 39 a^{2} + 66 a + 13\right)\cdot 73^{6} + \left(45 a^{3} + 10 a^{2} + 17 a + 27\right)\cdot 73^{7} + \left(35 a^{3} + 3 a^{2} + 67 a + 34\right)\cdot 73^{8} + \left(4 a^{3} + 53 a^{2} + 43 a + 60\right)\cdot 73^{9} +O(73^{10})\) |
$r_{ 6 }$ | $=$ | \( 31 a^{3} + 47 a^{2} + 34 a + 22 + \left(66 a^{3} + 51 a^{2} + 64 a + 30\right)\cdot 73 + \left(27 a^{3} + 70 a^{2} + 13 a + 5\right)\cdot 73^{2} + \left(61 a^{3} + 45 a^{2} + 2 a + 46\right)\cdot 73^{3} + \left(45 a^{3} + 55 a^{2} + 19 a + 19\right)\cdot 73^{4} + \left(52 a^{3} + 28 a^{2} + 40 a + 27\right)\cdot 73^{5} + \left(45 a^{3} + 39 a^{2} + 66 a + 20\right)\cdot 73^{6} + \left(45 a^{3} + 10 a^{2} + 17 a + 72\right)\cdot 73^{7} + \left(35 a^{3} + 3 a^{2} + 67 a + 32\right)\cdot 73^{8} + \left(4 a^{3} + 53 a^{2} + 43 a + 20\right)\cdot 73^{9} +O(73^{10})\) |
$r_{ 7 }$ | $=$ | \( 34 a^{3} + 28 a^{2} + 42 a + 11 + \left(65 a^{3} + a^{2} + 52 a + 2\right)\cdot 73 + \left(45 a^{3} + 3 a^{2} + 67 a + 44\right)\cdot 73^{2} + \left(48 a^{3} + 67 a^{2} + 29 a + 17\right)\cdot 73^{3} + \left(27 a^{3} + 50 a^{2} + 50 a + 13\right)\cdot 73^{4} + \left(15 a^{3} + 19 a^{2} + 71 a + 70\right)\cdot 73^{5} + \left(31 a^{3} + 29 a^{2} + 35 a + 52\right)\cdot 73^{6} + \left(2 a^{3} + 40 a^{2} + 46 a + 57\right)\cdot 73^{7} + \left(19 a^{3} + 41 a^{2} + 39 a + 9\right)\cdot 73^{8} + \left(48 a^{3} + 23 a^{2} + 10 a + 57\right)\cdot 73^{9} +O(73^{10})\) |
$r_{ 8 }$ | $=$ | \( 34 a^{3} + 28 a^{2} + 42 a + 59 + \left(65 a^{3} + a^{2} + 52 a + 4\right)\cdot 73 + \left(45 a^{3} + 3 a^{2} + 67 a + 44\right)\cdot 73^{2} + \left(48 a^{3} + 67 a^{2} + 29 a + 9\right)\cdot 73^{3} + \left(27 a^{3} + 50 a^{2} + 50 a + 1\right)\cdot 73^{4} + \left(15 a^{3} + 19 a^{2} + 71 a + 8\right)\cdot 73^{5} + \left(31 a^{3} + 29 a^{2} + 35 a + 69\right)\cdot 73^{6} + \left(2 a^{3} + 40 a^{2} + 46 a + 19\right)\cdot 73^{7} + \left(19 a^{3} + 41 a^{2} + 39 a + 19\right)\cdot 73^{8} + \left(48 a^{3} + 23 a^{2} + 10 a + 2\right)\cdot 73^{9} +O(73^{10})\) |
$r_{ 9 }$ | $=$ | \( 34 a^{3} + 28 a^{2} + 42 a + 69 + \left(65 a^{3} + a^{2} + 52 a + 25\right)\cdot 73 + \left(45 a^{3} + 3 a^{2} + 67 a\right)\cdot 73^{2} + \left(48 a^{3} + 67 a^{2} + 29 a + 44\right)\cdot 73^{3} + \left(27 a^{3} + 50 a^{2} + 50 a + 21\right)\cdot 73^{4} + \left(15 a^{3} + 19 a^{2} + 71 a + 69\right)\cdot 73^{5} + \left(31 a^{3} + 29 a^{2} + 35 a + 59\right)\cdot 73^{6} + \left(2 a^{3} + 40 a^{2} + 46 a + 29\right)\cdot 73^{7} + \left(19 a^{3} + 41 a^{2} + 39 a + 8\right)\cdot 73^{8} + \left(48 a^{3} + 23 a^{2} + 10 a + 17\right)\cdot 73^{9} +O(73^{10})\) |
$r_{ 10 }$ | $=$ | \( 42 a^{3} + 26 a^{2} + 39 a + 14 + \left(6 a^{3} + 21 a^{2} + 8 a + 27\right)\cdot 73 + \left(45 a^{3} + 2 a^{2} + 59 a + 4\right)\cdot 73^{2} + \left(11 a^{3} + 27 a^{2} + 70 a + 33\right)\cdot 73^{3} + \left(27 a^{3} + 17 a^{2} + 53 a + 3\right)\cdot 73^{4} + \left(20 a^{3} + 44 a^{2} + 32 a + 49\right)\cdot 73^{5} + \left(27 a^{3} + 33 a^{2} + 6 a + 11\right)\cdot 73^{6} + \left(27 a^{3} + 62 a^{2} + 55 a + 3\right)\cdot 73^{7} + \left(37 a^{3} + 69 a^{2} + 5 a + 67\right)\cdot 73^{8} + \left(68 a^{3} + 19 a^{2} + 29 a + 20\right)\cdot 73^{9} +O(73^{10})\) |
$r_{ 11 }$ | $=$ | \( 42 a^{3} + 26 a^{2} + 39 a + 24 + \left(6 a^{3} + 21 a^{2} + 8 a + 48\right)\cdot 73 + \left(45 a^{3} + 2 a^{2} + 59 a + 33\right)\cdot 73^{2} + \left(11 a^{3} + 27 a^{2} + 70 a + 67\right)\cdot 73^{3} + \left(27 a^{3} + 17 a^{2} + 53 a + 23\right)\cdot 73^{4} + \left(20 a^{3} + 44 a^{2} + 32 a + 37\right)\cdot 73^{5} + \left(27 a^{3} + 33 a^{2} + 6 a + 2\right)\cdot 73^{6} + \left(27 a^{3} + 62 a^{2} + 55 a + 13\right)\cdot 73^{7} + \left(37 a^{3} + 69 a^{2} + 5 a + 56\right)\cdot 73^{8} + \left(68 a^{3} + 19 a^{2} + 29 a + 35\right)\cdot 73^{9} +O(73^{10})\) |
$r_{ 12 }$ | $=$ | \( 42 a^{3} + 26 a^{2} + 39 a + 39 + \left(6 a^{3} + 21 a^{2} + 8 a + 24\right)\cdot 73 + \left(45 a^{3} + 2 a^{2} + 59 a + 4\right)\cdot 73^{2} + \left(11 a^{3} + 27 a^{2} + 70 a + 41\right)\cdot 73^{3} + \left(27 a^{3} + 17 a^{2} + 53 a + 15\right)\cdot 73^{4} + \left(20 a^{3} + 44 a^{2} + 32 a + 38\right)\cdot 73^{5} + \left(27 a^{3} + 33 a^{2} + 6 a + 68\right)\cdot 73^{6} + \left(27 a^{3} + 62 a^{2} + 55 a + 40\right)\cdot 73^{7} + \left(37 a^{3} + 69 a^{2} + 5 a + 57\right)\cdot 73^{8} + \left(68 a^{3} + 19 a^{2} + 29 a + 2\right)\cdot 73^{9} +O(73^{10})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 12 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 12 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | |
$1$ | $2$ | $(1,8)(2,7)(3,9)(4,10)(5,12)(6,11)$ | $-2$ | |
$6$ | $2$ | $(1,4)(2,6)(3,5)(7,11)(8,10)(9,12)$ | $0$ | |
$6$ | $2$ | $(1,9)(2,7)(3,8)(4,6)(10,11)$ | $0$ | ✓ |
$2$ | $3$ | $(1,3,2)(4,6,5)(7,8,9)(10,11,12)$ | $-1$ | |
$2$ | $4$ | $(1,4,8,10)(2,5,7,12)(3,6,9,11)$ | $0$ | |
$2$ | $6$ | $(1,7,3,8,2,9)(4,12,6,10,5,11)$ | $1$ | |
$2$ | $12$ | $(1,11,7,4,3,12,8,6,2,10,9,5)$ | $-\zeta_{12}^{3} + 2 \zeta_{12}$ | |
$2$ | $12$ | $(1,12,9,4,2,11,8,5,3,10,7,6)$ | $\zeta_{12}^{3} - 2 \zeta_{12}$ |