Properties

Label 2.1764.8t6.b
Dimension $2$
Group $D_{8}$
Conductor $1764$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:\(1764\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 8.0.38423222208.2
Galois orbit size: $2$
Smallest permutation container: $D_{8}$
Parity: odd
Projective image: $D_4$
Projective field: Galois closure of 4.0.12348.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 137 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ \( 43 + 102\cdot 137 + 36\cdot 137^{2} + 134\cdot 137^{3} + 60\cdot 137^{4} + 32\cdot 137^{5} +O(137^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 47 + 4\cdot 137 + 130\cdot 137^{2} + 89\cdot 137^{3} + 97\cdot 137^{4} + 106\cdot 137^{5} +O(137^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 49 + 60\cdot 137 + 100\cdot 137^{2} + 12\cdot 137^{3} + 124\cdot 137^{4} + 98\cdot 137^{5} +O(137^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 56 + 73\cdot 137 + 112\cdot 137^{2} + 123\cdot 137^{3} + 33\cdot 137^{4} + 81\cdot 137^{5} +O(137^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 74 + 105\cdot 137 + 114\cdot 137^{2} + 116\cdot 137^{3} + 135\cdot 137^{4} + 20\cdot 137^{5} +O(137^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 86 + 100\cdot 137 + 43\cdot 137^{2} + 26\cdot 137^{3} + 116\cdot 137^{4} + 19\cdot 137^{5} +O(137^{6})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 87 + 24\cdot 137 + 67\cdot 137^{2} + 40\cdot 137^{3} + 76\cdot 137^{4} + 93\cdot 137^{5} +O(137^{6})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 109 + 76\cdot 137 + 79\cdot 137^{2} + 3\cdot 137^{3} + 40\cdot 137^{4} + 94\cdot 137^{5} +O(137^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,4,5)(2,7,3,8)$
$(1,4)(2,3)(5,6)(7,8)$
$(1,6)(4,5)(7,8)$
$(1,7)(2,6)(3,5)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,4)(2,3)(5,6)(7,8)$ $-2$ $-2$
$4$ $2$ $(1,7)(2,6)(3,5)(4,8)$ $0$ $0$
$4$ $2$ $(1,6)(4,5)(7,8)$ $0$ $0$
$2$ $4$ $(1,6,4,5)(2,7,3,8)$ $0$ $0$
$2$ $8$ $(1,8,5,3,4,7,6,2)$ $-\zeta_{8}^{3} + \zeta_{8}$ $\zeta_{8}^{3} - \zeta_{8}$
$2$ $8$ $(1,3,6,8,4,2,5,7)$ $\zeta_{8}^{3} - \zeta_{8}$ $-\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.