Properties

Label 2.18144.6t3.g.a
Dimension $2$
Group $D_{6}$
Conductor $18144$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{6}$
Conductor: \(18144\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 7 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.0.658409472.1
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Determinant: 1.56.2t1.b.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.4536.1

Defining polynomial

$f(x)$$=$ \( x^{6} + 12x^{4} - 36x^{3} + 198x^{2} - 288x + 332 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 10.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: \( x^{2} + 7x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 4 a + 5 + \left(5 a + 9\right)\cdot 11 + \left(10 a + 2\right)\cdot 11^{2} + \left(10 a + 2\right)\cdot 11^{3} + \left(9 a + 3\right)\cdot 11^{4} + \left(3 a + 3\right)\cdot 11^{5} + \left(8 a + 9\right)\cdot 11^{6} + \left(8 a + 1\right)\cdot 11^{7} + \left(a + 7\right)\cdot 11^{8} + \left(a + 9\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 8 a + 7 + \left(8 a + 4\right)\cdot 11 + \left(8 a + 9\right)\cdot 11^{2} + \left(8 a + 10\right)\cdot 11^{3} + \left(3 a + 10\right)\cdot 11^{4} + 2\cdot 11^{5} + \left(7 a + 7\right)\cdot 11^{6} + \left(2 a + 6\right)\cdot 11^{7} + \left(6 a + 3\right)\cdot 11^{8} + \left(9 a + 1\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 3 a + 6 + \left(2 a + 9\right)\cdot 11 + \left(2 a + 2\right)\cdot 11^{2} + \left(2 a + 4\right)\cdot 11^{3} + \left(7 a + 6\right)\cdot 11^{4} + 10 a\cdot 11^{5} + \left(3 a + 2\right)\cdot 11^{6} + \left(8 a + 10\right)\cdot 11^{7} + \left(4 a + 3\right)\cdot 11^{8} + a\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 7 a + 10 + \left(5 a + 4\right)\cdot 11 + 6\cdot 11^{2} + 2\cdot 11^{3} + \left(a + 10\right)\cdot 11^{4} + \left(7 a + 8\right)\cdot 11^{5} + \left(2 a + 5\right)\cdot 11^{6} + \left(2 a + 6\right)\cdot 11^{7} + \left(9 a + 5\right)\cdot 11^{8} + \left(9 a + 1\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 9 + 7\cdot 11 + 9\cdot 11^{2} + 6\cdot 11^{3} + 4\cdot 11^{4} + 7\cdot 11^{5} + 11^{6} + 5\cdot 11^{7} + 3\cdot 11^{8} + 9\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 7 + 7\cdot 11 + 11^{2} + 6\cdot 11^{3} + 8\cdot 11^{4} + 9\cdot 11^{5} + 6\cdot 11^{6} + 2\cdot 11^{7} + 9\cdot 11^{8} + 10\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6,3,4,5)$
$(2,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,4)(5,6)$$-2$
$3$$2$$(2,5)(4,6)$$0$
$3$$2$$(1,2)(3,4)(5,6)$$0$
$2$$3$$(1,6,4)(2,3,5)$$-1$
$2$$6$$(1,2,6,3,4,5)$$1$

The blue line marks the conjugacy class containing complex conjugation.