Basic invariants
Dimension: | $2$ |
Group: | $D_{6}$ |
Conductor: | \(18144\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 7 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 6.0.658409472.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{6}$ |
Parity: | odd |
Determinant: | 1.56.2t1.b.a |
Projective image: | $S_3$ |
Projective stem field: | Galois closure of 3.1.4536.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{6} + 12x^{4} - 36x^{3} + 198x^{2} - 288x + 332 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: \( x^{2} + 7x + 2 \)
Roots:
$r_{ 1 }$ | $=$ | \( 4 a + 5 + \left(5 a + 9\right)\cdot 11 + \left(10 a + 2\right)\cdot 11^{2} + \left(10 a + 2\right)\cdot 11^{3} + \left(9 a + 3\right)\cdot 11^{4} + \left(3 a + 3\right)\cdot 11^{5} + \left(8 a + 9\right)\cdot 11^{6} + \left(8 a + 1\right)\cdot 11^{7} + \left(a + 7\right)\cdot 11^{8} + \left(a + 9\right)\cdot 11^{9} +O(11^{10})\) |
$r_{ 2 }$ | $=$ | \( 8 a + 7 + \left(8 a + 4\right)\cdot 11 + \left(8 a + 9\right)\cdot 11^{2} + \left(8 a + 10\right)\cdot 11^{3} + \left(3 a + 10\right)\cdot 11^{4} + 2\cdot 11^{5} + \left(7 a + 7\right)\cdot 11^{6} + \left(2 a + 6\right)\cdot 11^{7} + \left(6 a + 3\right)\cdot 11^{8} + \left(9 a + 1\right)\cdot 11^{9} +O(11^{10})\) |
$r_{ 3 }$ | $=$ | \( 3 a + 6 + \left(2 a + 9\right)\cdot 11 + \left(2 a + 2\right)\cdot 11^{2} + \left(2 a + 4\right)\cdot 11^{3} + \left(7 a + 6\right)\cdot 11^{4} + 10 a\cdot 11^{5} + \left(3 a + 2\right)\cdot 11^{6} + \left(8 a + 10\right)\cdot 11^{7} + \left(4 a + 3\right)\cdot 11^{8} + a\cdot 11^{9} +O(11^{10})\) |
$r_{ 4 }$ | $=$ | \( 7 a + 10 + \left(5 a + 4\right)\cdot 11 + 6\cdot 11^{2} + 2\cdot 11^{3} + \left(a + 10\right)\cdot 11^{4} + \left(7 a + 8\right)\cdot 11^{5} + \left(2 a + 5\right)\cdot 11^{6} + \left(2 a + 6\right)\cdot 11^{7} + \left(9 a + 5\right)\cdot 11^{8} + \left(9 a + 1\right)\cdot 11^{9} +O(11^{10})\) |
$r_{ 5 }$ | $=$ | \( 9 + 7\cdot 11 + 9\cdot 11^{2} + 6\cdot 11^{3} + 4\cdot 11^{4} + 7\cdot 11^{5} + 11^{6} + 5\cdot 11^{7} + 3\cdot 11^{8} + 9\cdot 11^{9} +O(11^{10})\) |
$r_{ 6 }$ | $=$ | \( 7 + 7\cdot 11 + 11^{2} + 6\cdot 11^{3} + 8\cdot 11^{4} + 9\cdot 11^{5} + 6\cdot 11^{6} + 2\cdot 11^{7} + 9\cdot 11^{8} + 10\cdot 11^{9} +O(11^{10})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value |
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,3)(2,4)(5,6)$ | $-2$ |
$3$ | $2$ | $(2,5)(4,6)$ | $0$ |
$3$ | $2$ | $(1,2)(3,4)(5,6)$ | $0$ |
$2$ | $3$ | $(1,6,4)(2,3,5)$ | $-1$ |
$2$ | $6$ | $(1,2,6,3,4,5)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.