Properties

Label 2.1984.6t3.a
Dimension $2$
Group $D_{6}$
Conductor $1984$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:\(1984\)\(\medspace = 2^{6} \cdot 31 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 6.2.492032.2
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Projective image: $S_3$
Projective field: Galois closure of 3.1.31.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: \( x^{2} + 16x + 3 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 5 a + 5 + \left(14 a + 11\right)\cdot 17 + \left(a + 9\right)\cdot 17^{2} + \left(6 a + 8\right)\cdot 17^{3} + \left(13 a + 15\right)\cdot 17^{4} + \left(7 a + 7\right)\cdot 17^{5} + \left(8 a + 12\right)\cdot 17^{6} +O(17^{7})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 5 a + 7 + \left(14 a + 13\right)\cdot 17 + \left(a + 2\right)\cdot 17^{2} + \left(6 a + 4\right)\cdot 17^{3} + \left(13 a + 11\right)\cdot 17^{4} + \left(7 a + 14\right)\cdot 17^{5} + \left(8 a + 3\right)\cdot 17^{6} +O(17^{7})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 15 + 14\cdot 17 + 6\cdot 17^{2} + 4\cdot 17^{3} + 4\cdot 17^{4} + 10\cdot 17^{5} + 8\cdot 17^{6} +O(17^{7})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 12 a + 12 + \left(2 a + 5\right)\cdot 17 + \left(15 a + 7\right)\cdot 17^{2} + \left(10 a + 8\right)\cdot 17^{3} + \left(3 a + 1\right)\cdot 17^{4} + \left(9 a + 9\right)\cdot 17^{5} + \left(8 a + 4\right)\cdot 17^{6} +O(17^{7})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 12 a + 10 + \left(2 a + 3\right)\cdot 17 + \left(15 a + 14\right)\cdot 17^{2} + \left(10 a + 12\right)\cdot 17^{3} + \left(3 a + 5\right)\cdot 17^{4} + \left(9 a + 2\right)\cdot 17^{5} + \left(8 a + 13\right)\cdot 17^{6} +O(17^{7})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 2 + 2\cdot 17 + 10\cdot 17^{2} + 12\cdot 17^{3} + 12\cdot 17^{4} + 6\cdot 17^{5} + 8\cdot 17^{6} +O(17^{7})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(5,6)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-2$
$3$ $2$ $(1,2)(3,6)(4,5)$ $0$
$3$ $2$ $(1,6)(3,4)$ $0$
$2$ $3$ $(1,5,6)(2,3,4)$ $-1$
$2$ $6$ $(1,3,5,4,6,2)$ $1$
The blue line marks the conjugacy class containing complex conjugation.